Responsible Graph Neural Networks

Faculty Computer Science Year: 2023
Type of Publication: ZU Hosted Pages:
Authors:
Journal: 1st Edition Taylor & Francis Volume:
Keywords : Responsible Graph Neural Networks    
Abstract:
More frequent and complex cyber threats require robust, automated, and rapid responses from cyber-security specialists. This book offers a complete study in the area of graph learning in cyber, emphasizing graph neural networks (GNNs) and their cyber-security applications. Three parts examine the basics, methods and practices, and advanced topics. The first part presents a grounding in graph data structures and graph embedding and gives a taxonomic view of GNNs and cyber-security applications. The second part explains three different categories of graph learning, including deterministic, generative, and reinforcement learning and how they can be used for developing cyber defense models. The discussion of each category covers the applicability of simple and complex graphs, scalability, representative algorithms, and technical details. Undergraduate students, graduate students, researchers, cyber analysts, and AI engineers looking to understand practical deep learning methods will find this book an invaluable resource.
   
     
 
       

Author Related Publications

  • Mohammed Abdel Basset Metwally Attia, "Discrete greedy flower pollination algorithm for spherical traveling salesman problem", Springer, 2019 More
  • Mohammed Abdel Basset Metwally Attia, "A New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems", Natural Sciences Publishing Cor., 2014 More
  • Mohammed Abdel Basset Metwally Attia, "A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems", Springer London, 2021 More
  • Mohammed Abdel Basset Metwally Attia, "An efficient binary slime mould algorithm integrated with a novel attacking-feeding strategy for feature selection", Pergamon, 2021 More
  • Mohammed Abdel Basset Metwally Attia, "An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: Analysis and validations", Pergamon, 2021 More

Department Related Publications

  • Saber Mohamed, "Self-adaptive Mix of Particle Swarm Methodologies for Constrained Optimization", ELSEVIER, 2014 More
  • Saber Mohamed, "Testing United Multi-Operator Evolutionary Algorithms on The CEC2014 Real-Parameter Numerical Optimization", IEEE, 2014 More
  • Saber Mohamed, "GA with a New Multi-Parent Crossover for Constrained Optimization", IEEE, 2011 More
  • Eman samir hasan sayed, "Decision Making Assessment for Site Selection Using the AHP and TOPSIS Methods", Statistical studies institution, Cairo University, Egypt, 2007 More
  • Israa Abdel Ghaffar Salem Mohammed, "Estimating Bed Requirements for a Pediatric Department in a University Hospital in Egypt", Modern Management Science & Engineering, 2016 More
Tweet