Responsible Graph Neural Networks

Faculty Computer Science Year: 2023
Type of Publication: ZU Hosted Pages:
Authors:
Journal: 1st Edition Taylor & Francis Volume:
Keywords : Responsible Graph Neural Networks    
Abstract:
More frequent and complex cyber threats require robust, automated, and rapid responses from cyber-security specialists. This book offers a complete study in the area of graph learning in cyber, emphasizing graph neural networks (GNNs) and their cyber-security applications. Three parts examine the basics, methods and practices, and advanced topics. The first part presents a grounding in graph data structures and graph embedding and gives a taxonomic view of GNNs and cyber-security applications. The second part explains three different categories of graph learning, including deterministic, generative, and reinforcement learning and how they can be used for developing cyber defense models. The discussion of each category covers the applicability of simple and complex graphs, scalability, representative algorithms, and technical details. Undergraduate students, graduate students, researchers, cyber analysts, and AI engineers looking to understand practical deep learning methods will find this book an invaluable resource.
   
     
 
       

Author Related Publications

  • Mohammed Abdel Basset Metwally Attia, "Discrete greedy flower pollination algorithm for spherical traveling salesman problem", Springer, 2019 More
  • Mohammed Abdel Basset Metwally Attia, "A New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems", Natural Sciences Publishing Cor., 2014 More
  • Mohammed Abdel Basset Metwally Attia, "A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems", Springer London, 2021 More
  • Mohammed Abdel Basset Metwally Attia, "An efficient binary slime mould algorithm integrated with a novel attacking-feeding strategy for feature selection", Pergamon, 2021 More
  • Mohammed Abdel Basset Metwally Attia, "An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: Analysis and validations", Pergamon, 2021 More

Department Related Publications

  • Mohammed Abdel Basset Metwally Attia, "The role of single valued neutrosophic sets and rough sets in smart city: Imperfect and incomplete information systems", Elsevier‏, 2018 More
  • Mai Mohammed Abdul Sattar Jaafar, "The role of single valued neutrosophic sets and rough sets in smart city: Imperfect and incomplete information systems", Elsevier‏, 2018 More
  • Saber Mohamed, "A Constraint Consensus Memetic Algorithm for Solving Constrained Optimization Problems", Taylor & Francis, 2013 More
  • Saber Mohamed, "Self-Adaptive Differential Evolution Incorporating a Heuristic Mixing of Operators", Springer, 2012 More
  • Saber Mohamed, "Configuring Two-algorithm-based Evolutionary Approach for Solving Dynamic Economic Dispatch Problems", Elsevier, 2016 More
Tweet