Zagazig University Digital Repository
Home
Thesis & Publications
All Contents
Publications
Thesis
Graduation Projects
Research Area
Research Area Reports
Search by Research Area
Universities Thesis
ACADEMIC Links
ACADEMIC RESEARCH
Zagazig University Authors
Africa Research Statistics
Google Scholar
Research Gate
Researcher ID
CrossRef
Multilevel thresholding satellite image segmentation using chaotic coronavirus optimization algorithm with hybrid fitness function
Faculty
Computer Science
Year:
2023
Type of Publication:
ZU Hosted
Pages:
855–886
Authors:
Khalied Mohamed Hosny
Staff Zu Site
Abstract In Staff Site
Journal:
Neural Computing and Applications Springer
Volume:
35
Keywords :
Multilevel thresholding satellite image segmentation using
Abstract:
Image segmentation is a critical step in digital image processing applications. One of the most preferred methods for image segmentation is multilevel thresholding, in which a set of threshold values is determined to divide an image into different classes. However, the computational complexity increases when the required thresholds are high. Therefore, this paper introduces a modified Coronavirus Optimization algorithm for image segmentation. In the proposed algorithm, the chaotic map concept is added to the initialization step of the naive algorithm to increase the diversity of solutions. A hybrid of the two commonly used methods, Otsu’s and Kapur’s entropy, is applied to form a new fitness function to determine the optimum threshold values. The proposed algorithm is evaluated using two different datasets, including six benchmarks and six satellite images. Various evaluation metrics are used to measure the quality of the segmented images using the proposed algorithm, such as mean square error, peak signal-to-noise ratio, Structural Similarity Index, Feature Similarity Index, and Normalized Correlation Coefficient. Additionally, the best fitness values are calculated to demonstrate the proposed method's ability to find the optimum solution. The obtained results are compared to eleven powerful and recent metaheuristics and prove the superiority of the proposed algorithm in the image segmentation problem.
Author Related Publications
Khalied Mohamed Hosny, "SEMANTIC REPRESENTATION OF MUSIC DATABASE USING NEW ONTOLOGY-BASED SYSTEM", Journal of Theoretical and Applied Information Technology, 2020
More
Khalied Mohamed Hosny, "Building a New Semantic Social Network Using Semantic Web-Based Techniques", ِASPG, 2021
More
Khalied Mohamed Hosny, "New Graphical Ultimate Processor for Mapping Relational Database to Resource Description Framework", IEEE, 2022
More
Khalied Mohamed Hosny, "Fast computation of accurate Zernike moments", Springer, 2008
More
Khalied Mohamed Hosny, "Accurate Computation of QPCET for Color Images in Different Coordinate Systems", SPIE, 2017
More
Department Related Publications
Osama Mohamed Abdelsalam Ahmed Elkomy, "MT-nCov-Net: A Multitask Deep-Learning Framework for Efficient Diagnosis of COVID-19 Using Tomography Scans", IEEE, 2021
More
Osama Mohamed Abdelsalam Ahmed Elkomy, "Two-Stage Deep Learning Framework for Discrimination between COVID-19 and Community-Acquired Pneumonia from Chest CT scans.", ELSEVIER, 2021
More
Osama Mohamed Abdelsalam Ahmed Elkomy, "Efficient model for emergency departments: Real case study", Computers, Materials and ContinuaComputers, Materials and Continua, 2022
More
Ehab Roshdy Mohamed, "SEMANTIC REPRESENTATION OF MUSIC DATABASE USING NEW ONTOLOGY-BASED SYSTEM", Journal of Theoretical and Applied Information Technology, 2020
More
Khalied Mohamed Hosny, "SEMANTIC REPRESENTATION OF MUSIC DATABASE USING NEW ONTOLOGY-BASED SYSTEM", Journal of Theoretical and Applied Information Technology, 2020
More
جامعة المنصورة
جامعة الاسكندرية
جامعة القاهرة
جامعة سوهاج
جامعة الفيوم
جامعة بنها
جامعة دمياط
جامعة بورسعيد
جامعة حلوان
جامعة السويس
شراقوة
جامعة المنيا
جامعة دمنهور
جامعة المنوفية
جامعة أسوان
جامعة جنوب الوادى
جامعة قناة السويس
جامعة عين شمس
جامعة أسيوط
جامعة كفر الشيخ
جامعة السادات
جامعة طنطا
جامعة بنى سويف