Deep Learning and Optimization-Based Methods for Skin Lesions Segmentation: A Review

Faculty Computer Science Year: 2023
Type of Publication: ZU Hosted Pages: 85467 - 85488
Authors:
Journal: IEEE Access IEEE Volume: 11
Keywords : Deep Learning , Optimization-Based Methods , Skin Lesions    
Abstract:
Skin cancer is a senior public health issue that could profit from computer-aided diagnosis to decrease the encumbrance of this widespread disease. Researchers have been more motivated to develop computer-aided diagnosis systems because visual examination wastes time. The initial stage in skin lesion analysis is skin lesion segmentation, which might assist in the following categorization task. It is a difficult task because sometimes the whole lesion might be the same colors, and the borders of pigment regions can be foggy. Several studies have effectively handled skin lesion segmentation; nevertheless, developing new methodologies to improve efficiency is necessary. This work thoroughly analyzes the most advanced algorithms and methods for skin lesion segmentation. The review begins with traditional segmentation techniques, followed by a brief review of skin lesion segmentation using deep learning and optimization techniques. The main objective of this work is to highlight the strengths and weaknesses of a wide range of algorithms. Additionally, it examines various commonly used datasets for skin lesions and the metrics used to evaluate the performance of these techniques.
   
     
 
       

Author Related Publications

  • Ehab Roshdy Mohamed, "SEMANTIC REPRESENTATION OF MUSIC DATABASE USING NEW ONTOLOGY-BASED SYSTEM", Journal of Theoretical and Applied Information Technology, 2020 More
  • Ehab Roshdy Mohamed, "Building a New Semantic Social Network Using Semantic Web-Based Techniques", ِASPG, 2021 More
  • Ehab Roshdy Mohamed, "New Graphical Ultimate Processor for Mapping Relational Database to Resource Description Framework", IEEE, 2022 More
  • Ehab Roshdy Mohamed, "Solving systems of nonlinear equations via conjugate direction flower pollination algorithm", inderscience, 2017 More
  • Ehab Roshdy Mohamed, "Cryptographic Accumulator-Based Scheme for Critical Data Integrity Verification in Cloud Storage", IEEE, 2019 More

Department Related Publications

  • Osama Mohamed Abdelsalam Ahmed Elkomy, "MT-nCov-Net: A Multitask Deep-Learning Framework for Efficient Diagnosis of COVID-19 Using Tomography Scans", IEEE, 2021 More
  • Osama Mohamed Abdelsalam Ahmed Elkomy, "Two-Stage Deep Learning Framework for Discrimination between COVID-19 and Community-Acquired Pneumonia from Chest CT scans.", ELSEVIER, 2021 More
  • Osama Mohamed Abdelsalam Ahmed Elkomy, "Efficient model for emergency departments: Real case study", Computers, Materials and ContinuaComputers, Materials and Continua, 2022 More
  • Ehab Roshdy Mohamed, "SEMANTIC REPRESENTATION OF MUSIC DATABASE USING NEW ONTOLOGY-BASED SYSTEM", Journal of Theoretical and Applied Information Technology, 2020 More
  • Khalied Mohamed Hosny, "SEMANTIC REPRESENTATION OF MUSIC DATABASE USING NEW ONTOLOGY-BASED SYSTEM", Journal of Theoretical and Applied Information Technology, 2020 More
Tweet