A Neutrosophic based C-Means Approach for Improving Breast Cancer Clustering Performance

Faculty Computer Science Year: 2023
Type of Publication: ZU Hosted Pages: pp. 317-330
Authors:
Journal: Neutrosophic Sets and Systemss University of New Mexico Volume: 53
Keywords : , Neutrosophic based C-Means Approach , Improving Breast Cancer    
Abstract:
Breast cancer is among the most prevalent cancers, and early detection is crucial to successful treatment. One of the most crucial phases of breast cancer treatment is a correct diagnosis. Numerous studies exist about breast cancer classification in the literature. However, analyzing the cancer dataset in the context of clusterability for unsupervised modeling is rare. This work analyzes pointedly the breast cancer dataset clusterability via applying the widely used c-means clustering algorithm and its evolved versions fuzzy and neutrosophic ones. An in-depth comparative study is conducted utilizing a set of quantitative and qualitative clustering efficiency metrics. The study's outcomes divulge the presented neutrosophic c-means clustering superiority in segregating similar breast cancer instances into clusters.
   
     
 
       

Author Related Publications

    Department Related Publications

    • Saber Mohamed, "Self-adaptive Mix of Particle Swarm Methodologies for Constrained Optimization", ELSEVIER, 2014 More
    • Saber Mohamed, "Testing United Multi-Operator Evolutionary Algorithms on The CEC2014 Real-Parameter Numerical Optimization", IEEE, 2014 More
    • Saber Mohamed, "GA with a New Multi-Parent Crossover for Constrained Optimization", IEEE, 2011 More
    • Eman samir hasan sayed, "Decision Making Assessment for Site Selection Using the AHP and TOPSIS Methods", Statistical studies institution, Cairo University, Egypt, 2007 More
    • Israa Abdel Ghaffar Salem Mohammed, "Estimating Bed Requirements for a Pediatric Department in a University Hospital in Egypt", Modern Management Science & Engineering, 2016 More
    Tweet