Zagazig University Digital Repository
Home
Thesis & Publications
All Contents
Publications
Thesis
Graduation Projects
Research Area
Research Area Reports
Search by Research Area
Universities Thesis
ACADEMIC Links
ACADEMIC RESEARCH
Zagazig University Authors
Africa Research Statistics
Google Scholar
Research Gate
Researcher ID
CrossRef
Effects of wall thickness variation on hydrogen embrittlement susceptibility of additively manufactured 316L stainless steel with lattice Auxetic structures
Faculty
Engineering
Year:
2023
Type of Publication:
ZU Hosted
Pages:
Authors:
Walaa AbdelAzim Abdulaziz AbdelAal
Staff Zu Site
Abstract In Staff Site
Journal:
MATERIALS MDPI
Volume:
Keywords :
Effects , wall thickness variation , hydrogen embrittlement
Abstract:
In the present study, the hydrogen embrittlement (HE) susceptibility of an additively manufactured (AM) 316L stainless steel (SS) was investigated. The materials were fabricated in the form of a lattice auxetic structure with three different strut thicknesses, 0.6, 1, and 1.4 mm, by the laser powder bed fusion technique at a volumetric energy of 70 J center dot mm(-3). The effect of H charging on the strength and ductility of the lattice structures was evaluated by conducting tensile testing of the H-charged specimens at a slow strain rate of 4 x 10(-5) s(-1). Hydrogen was introduced to the specimens via electrochemical charging in an NaOH aqueous solution for 24 h at 80 degrees C before the tensile testing. The microstructure evolution of the H-charged materials was studied using the electron backscattered diffraction (EBSD) technique. The study revealed that the auxetic structures of the AM 316L-SS exhibited a slight reduction in mechanical properties after H charging. The tensile strength was slightly decreased regardless of the thickness. However, the ductility was significantly reduced with increasing thickness. For instance, the strength and uniform elongation of the auxetic structure of the 0.6 mm thick strut were 340 MPa and 17.4% before H charging, and 320 MPa and 16.7% after H charging, respectively. The corresponding values of the counterpart's 1.4 mm thick strut were 550 MPa and 29% before H charging, and 523 MPa and 23.9% after H charging, respectively. The fractography of the fracture surfaces showed the impact of H charging, as cleavage fracture was a striking feature in H-charged materials. Furthermore, the mechanical twins were enhanced during tensile straining of the H-charged high-thickness material.
Author Related Publications
Walaa AbdelAzim Abdulaziz AbdelAal, "Microstructure evolution and mechanical properties of Al/Al–12%Si (multilayer processed by accumulative roll bonding (ARB", ScienceDirect, 2015
More
Walaa AbdelAzim Abdulaziz AbdelAal, "Effect of surface roughness due to wire brushing on cold roll bonding of Al 1050 sheets", كلية الهندسة, 2015
More
Walaa AbdelAzim Abdulaziz AbdelAal, "Grain size affecting the deformation characteristics via micro-injection upsetting", springer, 2021
More
Walaa AbdelAzim Abdulaziz AbdelAal, "Synthesis and Characterization of Hybrid Fiber-Reinforced Polymer by Adding Ceramic Nanoparticles for Aeronautical Structural Applications", MDPI, 2021
More
Walaa AbdelAzim Abdulaziz AbdelAal, "Metallurgical analysis of ASME SA213 T12 boiler vertical water-wall tubes failure", elsevier, 2023
More
Department Related Publications
Soliman Soliman Soliman Alieldien, "A first-order shear deformation finite element model for elastostatic analysis of laminated composite plates and the equivalent functionally graded plates", Ain Shams Engineering Journal, 2011
More
Soliman Soliman Soliman Alieldien, "Size-dependent analysis of functionally graded ultra-thin films", Structural Engineering and Mechanics, Vol. 44, No. 4 (2012) 431-448, 2012
More
Soliman Soliman Soliman Alieldien, "Bending Analysis of Ultra-thin Functionally Graded Mindlin Plates Incorporating Surface Energy Effects", International Journal of Mechanical Sciences, 2013
More
Soliman Soliman Soliman Alieldien, "Finite element analysis of functionally graded nano-scale films", Finite Elements in Analysis and Design, 2013
More
Soliman Soliman Soliman Alieldien, "Finite Element Analysis of the Deformation of Functionally Graded Plates under Thermomechanical Loads", Mathematical Problems in Engineering, 2013
More
جامعة المنصورة
جامعة الاسكندرية
جامعة القاهرة
جامعة سوهاج
جامعة الفيوم
جامعة بنها
جامعة دمياط
جامعة بورسعيد
جامعة حلوان
جامعة السويس
شراقوة
جامعة المنيا
جامعة دمنهور
جامعة المنوفية
جامعة أسوان
جامعة جنوب الوادى
جامعة قناة السويس
جامعة عين شمس
جامعة أسيوط
جامعة كفر الشيخ
جامعة السادات
جامعة طنطا
جامعة بنى سويف