Metaheuristics Algorithms for Medical Applications: Methods and Applications

Faculty Computer Science Year: 2023
Type of Publication: ZU Hosted Pages:
Authors:
Journal: 9780443133152 Elsevier Science & Technology Volume:
Keywords : Metaheuristics Algorithms , Medical Applications: Methods , Applications    
Abstract:
Metaheuristics Algorithms for Medical Applications: Methods and Applications provides readers with the most complete reference for developing metaheuristics techniques with machine learning for solving biomedical problems. This book is organized to present a stepwise progression beginning with the basics of metaheuristics, leading into methods and practices, and concluding with advanced topics. The first section of this book presents the fundamental concepts of metaheuristics and machine learning and provides a comprehensive taxonomic view of metaheuristics methods according to a variety of criteria such as data type, scope, and method. The second section of this book explains how to apply metaheuristics techniques for solving large-scale biomedical problems, including analysis and validation under different strategies. The final portion of the book focuses on advanced topics in metaheuristics in four different applications. Readers will discover a variety of new methods, approaches, and techniques, as well as a wide range of applications demonstrating key concepts in metaheuristics for biomedical science. This book provides a leading-edge resource for researchers in a variety of scientific fields who are interested in metaheuristics, including mathematics, biomedical engineering, computer science, biological sciences, and clinicians in medical practice.
   
     
 
       

Author Related Publications

    Department Related Publications

    • Ibrahiem Mahmoud Mohamed Elhenawy, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021 More
    • Ahmed Raafat Abass Mohamed Saliem, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021 More
    • Ahmed Raafat Abass Mohamed Saliem, "Using General Regression with Local Tuning for Learning Mixture Models from Incomplete Data Sets", ScienceDirect, 2010 More
    • Ahmed Raafat Abass Mohamed Saliem, "On determining efficient finite mixture models with compact and essential components for clustering data", ScienceDirect, 2013 More
    • Ahmed Raafat Abass Mohamed Saliem, "Unsupervised learning of mixture models based on swarm intelligence and neural networks with optimal completion using incomplete data", ScienceDirect, 2012 More
    Tweet