On the facile and accurate determination of the highly accurate recent methods to optimize the parameters of different fuel cells: Simulations and analysis

Faculty Computer Science Year: 2023
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Energy Elsevier Ltd. Volume:
Keywords : , , facile , accurate determination , , highly accurate recent    
Abstract:
The proton exchange membrane fuel cell (PEMFC) is a potential source of renewable energy that offers a dual benefit of reducing environmental pollution and enabling easy electricity savings. The mathematical model of PEMFC involves several unknown parameters that need to be precisely estimated for developing an accurate model. This process of estimating parameters is known as the parameter estimation of PEMFC and is considered an optimization problem. Although the problem of parameter estimation for PEMFC belongs to the category of optimization problems, it cannot be solved by all optimization techniques as it is a complex and nonlinear problem. Therefore, this paper presents a new parameter estimation technique based on adopting a recently published metaheuristic algorithm known as the artificial hummingbird algorithm (AHA). AHA is simple and easy to implement as its main advantages encourage us to adopt it for tackling this problem. However, unfortunately, AHA suffers from slow convergence speed and hence will consume a huge number of function evaluations even reaching the desired outcomes. Therefore, two improvements have been applied to the classical AHA for proposing a new variant , namely IAHA, for overcoming the parameter estimation of PEMFC stacks. IAHA was applied to estimate the unknown parameters of six different PEMFC stacks and compared with 11 well-known competing optimizers in terms of accuracy of outcomes, convergence speed, stability, and CPU time. Based on the experimental results, IAHA outperforms all other algorithms across all performance parameters except for CPU time, which is on par with the other methods.
   
     
 
       

Author Related Publications

  • Mohammed Abdel Basset Metwally Attia, "Discrete greedy flower pollination algorithm for spherical traveling salesman problem", Springer, 2019 More
  • Mohammed Abdel Basset Metwally Attia, "A New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems", Natural Sciences Publishing Cor., 2014 More
  • Mohammed Abdel Basset Metwally Attia, "A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems", Springer London, 2021 More
  • Mohammed Abdel Basset Metwally Attia, "An efficient binary slime mould algorithm integrated with a novel attacking-feeding strategy for feature selection", Pergamon, 2021 More
  • Mohammed Abdel Basset Metwally Attia, "An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: Analysis and validations", Pergamon, 2021 More

Department Related Publications

  • Ibrahiem Mahmoud Mohamed Elhenawy, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021 More
  • Ahmed Raafat Abass Mohamed Saliem, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021 More
  • Ahmed Raafat Abass Mohamed Saliem, "Using General Regression with Local Tuning for Learning Mixture Models from Incomplete Data Sets", ScienceDirect, 2010 More
  • Ahmed Raafat Abass Mohamed Saliem, "On determining efficient finite mixture models with compact and essential components for clustering data", ScienceDirect, 2013 More
  • Ahmed Raafat Abass Mohamed Saliem, "Unsupervised learning of mixture models based on swarm intelligence and neural networks with optimal completion using incomplete data", ScienceDirect, 2012 More
Tweet