Statistical analysis of progressively first-failure-censored data via beta-binomial removals

Faculty Technology and Development Year: 2023
Type of Publication: ZU Hosted Pages:
Authors:
Journal: AIMS Mathematics AIMS Press Volume:
Keywords : Statistical analysis , progressively first-failure-censored data , beta-binomial    
Abstract:
Progressive first-failure censoring has been widely-used in practice when the experimenter desires to remove some groups of test units before the first-failure is observed in all groups. Practically, some test groups may haphazardly quit the experiment at each progressive stage, which cannot be determined in advance. As a result, in this article, we propose a progressively first-failure censored sampling with random removals, which allows the removal of the surviving group(s) during the execution of the life test with uncertain probability, called the beta-binomial probability law. Generalized extreme value lifetime model has been widely-used to analyze a variety of extreme value data, including flood flows, wind speeds, radioactive emissions, and others. So, when the sample observations are gathered using the suggested censoring plan, the Bayes and maximum likelihood approaches are used to estimate the generalized extreme value distribution parameters. Furthermore, Bayes estimates are produced under balanced symmetric and asymmetric loss functions. A hybrid Gibbs within the Metropolis-Hastings method is suggested to gather samples from the joint posterior distribution. The highest posterior density intervals are also provided. To further understand how the suggested inferential approaches actually work in the long run, extensive Monte Carlo simulation experiments are carried out. Two applications of real-world datasets from clinical trials are examined to show the applicability and feasibility of the suggested methodology. The numerical results showed that the proposed sampling mechanism is more flexible to operate a classical (or Bayesian) inferential approach to estimate any lifetime parameter.
   
     
 
       

Author Related Publications

  • Ahmed Shahat Ibrahim Sayyed Hassan, "Parameters Estimation for the Exponentiated Weibull Distribution Based on Generalized Progressive Hybrid Censoring Schemes", Science and Education Publishing, 2017 More
  • Ahmed Shahat Ibrahim Sayyed Hassan, "Maximum likelihood estimation of the generalised Gompertz distribution under progressively first-failure censored sampling", South African, 2018 More
  • Ahmed Shahat Ibrahim Sayyed Hassan, "Inferences for Weibull lifetime model under progressively first-failure censored data with binomial random removals", Published online in International Academic, 2020 More
  • Ahmed Shahat Ibrahim Sayyed Hassan, "Inferences for generalized Topp-Leone distribution under dual generalized order statistics with applications to Engineering and COVID-19 data", IOS Press, 2021 More
  • Ahmed Shahat Ibrahim Sayyed Hassan, "Inferences and Optimal Censoring Schemes for Progressively First-Failure Censored Nadarajah-Haghighi Distribution", Springer, 2020 More

Department Related Publications

  • Ahmed Shahat Ibrahim Sayyed Hassan, "Bayesian Life Analysis of Generalized Chen's Population Under Progressive Censoring", Open Journal Systems, 2022 More
  • Ahmed Abdelwahab Ahmed Eeid, "استخدام الشبكات العصبية الاحتمالية فى الدمج بين آليات الحوكمة والتنبؤ بالتعثر المالى فى سوق رأس المال المصرى (دراسة نظرية تطبيقية)", مجلة الدراسات والبحوث التجارية - كلية التجارة - جامعة بنها, 2015 More
  • Ahmed Shahat Ibrahim Sayyed Hassan, "Statistical Analysis of Improved Type-II Adaptive Progressive Hybrid Censored NH Data", Springer Nature, 2024 More
  • Ahmed Shahat Ibrahim Sayyed Hassan, "Analysis of the new complementary unit Weibull model from adaptive progressively Type-II hybrid", AIP Publishing, 2024 More
Tweet