Peristaltic pumping of Boron Nitride‑Ethylene Glycol nanofluid through a complex wavy micro‑channel under the effect of induced magnetic field and double diffusive

Faculty Science Year: 2023
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Scientific Reports NATURE PORTFOLIO Volume: 1
Keywords : Peristaltic pumping , Boron Nitride‑Ethylene Glycol nanofluid through , complex    
Abstract:
The main objective of this work is to present a comprehensive study that scrutinize the influence of DD convection and induced magnetic field on peristaltic pumping of Boron Nitride—Ethylene Glycol nanofluid flow through a vertical complex irregular microchannel. Experimental study showed that the nanofluid created by suspending Boron Nitride particles in a combination of Ethylene Glycol exhibited non-Newtonian characteristics. Further, the Carreau’s fluid model provides accurate predictions about the rheological properties of BN-EG nanofluid. In order to imitate complicated peristaltic wave propagation conditions, sophisticated waveforms are forced at the walls. The essential properties of Brownian motion and thermophoresis phenomena are also included in simulating of heat equation as well as viscous dissipation. Mathematical simulation is performed by utilizing the lubrication approach. The resulting nonlinear coupled differential equation system is solved numerically using the built-in command (ND Solve function) in the Mathematica program. Numerical and pictorial evidence is used to illustrate the importance of various physiological features of flow quantities. The major findings demonstrated that the thermal resistance is observed to rise as the Soret and Dufour numbers increase, while the dissolvent concentration and nanoparticles volume fraction have the opposite effect.
   
     
 
       

Author Related Publications

  • Sameh Abdalazahr Hussein Mouawad, "Novel treatments for the bioconvective radiative Ellis nanofluids wedge flow with viscous dissipation and an activation energy", ELSEVIER, 2022 More
  • Sameh Abdalazahr Hussein Mouawad, "Electrokinetic peristaltic bioconvective Jeffrey nanofluid flow with activation energy for binary chemical reaction, radiation and variable fluid properties", Wiley, 2022 More
  • Sameh Abdalazahr Hussein Mouawad, "A novel mathematical model of MHD boundary layer flow of an activated micropolar nanofluid over a stretching surface under the effect of electro-osmosis forces", World Scienti¯c Publishing Company, 2023 More
  • Sameh Abdalazahr Hussein Mouawad, "FEM treatments for MHD highly mixed convection flow within partially heated double-lid driven odd-shaped enclosures using ternary composition nanofluids", ELSAVIER, 2023 More
  • Sameh Abdalazahr Hussein Mouawad, "Simulating and interpretation of MHD peristaltic transport of dissipated Eyring–Powell nanofluid flow through vertical divergent/nondivergent channel", Taylor & Francis, 2023 More

Department Related Publications

  • Hany Samih Bayoumi Ibrahim, "Passive and active controllers for suppressing the torsional vibration of multiple-degree-of-freedom system", Sage, 2014 More
  • Hany Samih Bayoumi Ibrahim, "Active vibration control of a dynamical system via negative linear velocity feedback", Springer Netherlands, 2014 More
  • Ahmed Mohamed Khedr Souliman, "NONLINEAR TRAJECTORY DISCOVERY OF A MOVING TARGET BY WIRELESS SENSOR NETWORKS", Computing and Informatics,, 2010 More
  • Ahmed Mohamed Khedr Souliman, "SEP-CS: Effective Routing Protocol for Heterogeneous Wireless Sensor Networks", Ad Hoc & Sensor Wireless Networks, 2012 More
  • Ahmed Mohamed Khedr Souliman, "Minimum connected cover of a query region in heterogeneous wireless sensor networks", Information Sciences, 2013 More
Tweet