Massive MIMO NOMA: Double-Mode Model towards Green 5G Networks

Faculty Computer Science Year: 2023
Type of Publication: ZU Hosted Pages: 6425
Authors:
Journal: Sensors MDPI Volume: 23
Keywords : Massive MIMO NOMA: Double-Mode Model towards    
Abstract:
With the development of the Internet of Things (IoT), the number of devices will also increase tremendously. However, we need more wireless communication resources. It has been shown in the literature that non-orthogonal multiple access (NOMA) offers high multiplexing gains due to the simultaneous transfer of signals, and massive multiple-input–multiple-outputs (mMIMOs) offer high spectrum efficiency due to the high antenna gain and high multiplexing gains. Therefore, a downlink mMIMO NOMA cooperative system is considered in this paper. The users at the cell edge in 5G cellular system generally suffer from poor signal quality as they are far away from the BS and expend high battery power to decode the signals superimposed through NOMA. Thus, this paper uses a cooperative relay system and proposes the mMIMO NOMA double-mode model to reduce battery expenditure and increase the cell edge user’s energy efficiency and sum rate. In the mMIMO NOMA double-mode model, two modes of operation are defined. Depending on the relay’s battery level, these modes are chosen to utilize the system’s energy efficiency. Comprehensive numerical results show the improvement in the proposed system’s average sum rate and average energy efficiency compared with a conventional system. In a cooperative NOMA system, the base station (BS) transmits a signal to a relay, and the relay forwards the signal to a cluster of users. This cluster formation depends on the user positions and geographical restrictions concerning the relay equipment. Therefore, it is vital to form user clusters for efficient and simultaneous transmission. This paper also presents a novel method for efficient cluster formation.
   
     
 
       

Author Related Publications

  • Wael Said AbdelMageed Mohamed, "A big data approach to sentiment analysis using greedy feature selection with cat swarm optimization-based long short-term memory neural networks", Springer Nature, 2018 More
  • Wael Said AbdelMageed Mohamed, "Improving the reconstruction of dental occlusion using a reconstructed‑based identical matrix point technique", Springer Nature Switzerland AG, 2021 More
  • Wael Said AbdelMageed Mohamed, "Connection-Adjustable Network Slicing Process for Heterogeneous Service Handling in Real-Time Applications", American Scientific Publishers, 2022 More
  • Wael Said AbdelMageed Mohamed, "Space Division Multiple Access for Cellular V2X Communications", Tech Science Press, 2022 More
  • Wael Said AbdelMageed Mohamed, "A Multi-Factor Authentication-Based Framework for Identity Management in Cloud Applications", Tech Science Press, 2021 More

Department Related Publications

  • Heba Zaki Mohamed Abdallah Elfiqi, "A computational linguistic approach for the identification of translator stylometry using Arabic-English text", IEEE, 2011 More
  • Heba Zaki Mohamed Abdallah Elfiqi, "Measuring Complexity of Mouse Brain Morphological Changes Using GeoEntropy", AIP Publishing, 2009 More
  • Mustafa Khamis Baz Ramadan, "An Efficient method for choosing most suitable cloud storage provider reducing top security risks based on multi-criteria neutrosophic decision making", An Efficient method for choosing most suitable cloud storage provider reducing top security risks based on multi-criteria neutrosophic decision making, 2017 More
  • Ibrahiem Mahmoud Mohamed Elhenawy, "2-Levels of clustering strategy to detect and locate copy-move forgery in digital images", springer, 2020 More
Tweet