Multi-Layer Preprocessing and U-Net with Residual Attention Block for Retinal Blood Vessel Segmentation

Faculty Computer Science Year: 2023
Type of Publication: ZU Hosted Pages: 3364
Authors:
Journal: Diagnostics MDPI Volume: 13
Keywords : Multi-Layer Preprocessing , U-Net with Residual Attention    
Abstract:
Retinal blood vessel segmentation is a valuable tool for clinicians to diagnose conditions such as atherosclerosis, glaucoma, and age-related macular degeneration. This paper presents a new framework for segmenting blood vessels in retinal images. The framework has two stages: a multi-layer preprocessing stage and a subsequent segmentation stage employing a U-Net with a multi-residual attention block. The multi-layer preprocessing stage has three steps. The first step is noise reduction, employing a U-shaped convolutional neural network with matrix factorization (CNN with MF) and detailed U-shaped U-Net (D_U-Net) to minimize image noise, culminating in the selection of the most suitable image based on the PSNR and SSIM values. The second step is dynamic data imputation, utilizing multiple models for the purpose of filling in missing data. The third step is data augmentation through the utilization of a latent diffusion model (LDM) to expand the training dataset size. The second stage of the framework is segmentation, where the U-Nets with a multi-residual attention block are used to segment the retinal images after they have been preprocessed and noise has been removed. The experiments show that the framework is effective at segmenting retinal blood vessels. It achieved Dice scores of 95.32, accuracy of 93.56, precision of 95.68, and recall of 95.45. It also achieved efficient results in removing noise using CNN with matrix factorization (MF) and D-U-NET according to values of PSNR and SSIM for (0.1, 0.25, 0.5, and 0.75) levels of noise. The LDM achieved an inception score of 13.6 and an FID of 46.2 in the augmentation step.
   
     
 
       

Author Related Publications

  • Wael Said AbdelMageed Mohamed, "A big data approach to sentiment analysis using greedy feature selection with cat swarm optimization-based long short-term memory neural networks", Springer Nature, 2018 More
  • Wael Said AbdelMageed Mohamed, "Improving the reconstruction of dental occlusion using a reconstructed‑based identical matrix point technique", Springer Nature Switzerland AG, 2021 More
  • Wael Said AbdelMageed Mohamed, "Connection-Adjustable Network Slicing Process for Heterogeneous Service Handling in Real-Time Applications", American Scientific Publishers, 2022 More
  • Wael Said AbdelMageed Mohamed, "Space Division Multiple Access for Cellular V2X Communications", Tech Science Press, 2022 More
  • Wael Said AbdelMageed Mohamed, "A Multi-Factor Authentication-Based Framework for Identity Management in Cloud Applications", Tech Science Press, 2021 More

Department Related Publications

  • Ahmed Salah Mohamed Mostafa, "Cluster-Distribute-Align-Merge: A General Algorithm to Speed Up Multiple Sequence Alignment on Multi-Core Computers", Journal of Computational and Theoretical Nanoscience, 2014 More
  • Zaher Awad Aboelenieen Elhendy, "NEW APPROACH TO IMAGE EDGE DETECTION BASED ON QUANTUM ENTROPY", JOURNAL OF RUSSIAN LASER RESEARCH, 2016 More
  • Sarah AbdelRazek Ahmed AbdulHameid, "Cloud Storage Forensics: Survey", International Journal of Engineering Trends and Technology (IJETT), 2017 More
  • Doaa El-Shahat Barakat Mohammed, "A modified hybrid whale optimization algorithm for the scheduling problem in multimedia data objects", Wiley online library, 2019 More
  • Abdallah Gamal abdallah mahmoud, "A novel model for evaluation Hospital medical care systems based on plithogenic sets", Elsevier B.V., 2019 More
Tweet