On the understanding and prediction of tribological properties of Al-TiO2 nanocomposites using artificial neural network

Faculty Engineering Year: 2023
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Journal of Composite Materials Sage Volume:
Keywords : , , understanding , prediction , tribological properties , Al-TiO2 nanocomposites    
Abstract:
Due to the influence of the manufacturing process on the composite’s wear properties, mathematical models cannot accurately predict the wear rates and coefficients of friction of composite materials. As a result, this work provides a deeper comprehension of the tribological properties of Al-TiO2 nanocomposites with varying TiO2 content tested at varying sliding loads as well as improved predictability. Accumulative roll bonding (ARB) was used to create Al-TiO2 nanocomposites that had good TiO2 nanoparticle dispersion in the matrix. The pin-on-disc test was used to measure their wear rates and coefficient of friction. A neural network model was used to predict the wear rates and the coefficient of friction because there was a correlation between the composite morphology, hardness, and microstructure, as well as the evolution of the tribological properties. Due to the uniform distribution of TiO2 nanoparticles within the composite and the saturation of grain refinement in the Al matrix, it was experimentally demonstrated that wear rates decrease as the number of ARB passes increases until a plateau is reached. After five ARB passes, the composite containing 3% TiO2 nanoparticles achieved the maximum hardness improvement of 153.7%. While the same composite’s wear rates decrease from 3.7 × 10−3 g/m for pure Al to 1.1 × 10−3 g/m at 5 N load. For each of the produced composites that were subjected to four distinct wear loads, the artificial neural network model was able to accurately predict the wear rates and coefficient of friction, achieving determination coefficient R2 values of 0.9766 and 0.9866, respectively, for the wear rates and coefficient of friction.
   
     
 
       

Author Related Publications

  • Adel Fathy Meselhy Ibrahiem, "Effect of matrix/reinforcement particle size ratio (PSR) on the mechanical properties of extruded Al–SiC composites", Springer, 2014 More
  • Adel Fathy Meselhy Ibrahiem, "The effect of Mg add on morphology and mechanical properties of Al–xMg/10Al2O3 nanocomposite produced by mechanical alloying", Elsevier, 2014 More
  • Adel Fathy Meselhy Ibrahiem, "Effect of Iron Addition on the Microstructure, Mechanical and Magnetic Properties of Al-Matrix Composite Produced by Powder Metallurgy Route", Elsevier, 2014 More
  • Adel Fathy Meselhy Ibrahiem, "Compressive and wear resistance of nanometric alumina reinforced copper matrix composites", SciVerse ScienceDirect, 2011 More
  • Adel Fathy Meselhy Ibrahiem, "Prediction of abrasive wear rate of in situ Cu–Al2O3 nanocomposite using artificial neural networks", Springer-Verlag London Limited, 2011 More

Department Related Publications

  • Adel Fathy Meselhy Ibrahiem, "Effect of some manufacturing parameters on mechanical properties of extruded Al-alumina composites", لايوجد, 1900 More
  • Ashraf Abdelfattah Ali Hassanein, "A novel 3-D graphite structure from thermally stabilized electrospun MWCNTs/PAN nanofibril composite fabrics", International Journal of Advanced Manufacturing Technology, 2014 More
  • Amal Elhosaieny Meselhy Alshorbagy, "Free vibration characteristics of a functionally graded beam by finite element method", www.elsevier.com/locate/apm, 2010 More
  • Mohammed Abdelmoniem Mohamed Eltaher , "Static and buckling analysis of functionally graded Timoshenko nanobeams", www.elsevier.com, 2014 More
  • Tamer Ali Abdella Sebaee, "AN EXPERIMENTAL STUDY ON THE BOLTED JOINT CONNECTIONS IN GFRE [0/90]2S LAMINATES", Minoufiya University, 2009 More
Tweet