Optimization of the accumulative roll bonding process parameters and SiC content for optimum enhancement in mechanical properties of Al-Ni-SiC composites

Faculty Engineering Year: 2023
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Alexandria Engineering Journal Elsevier Volume:
Keywords : Optimization , , accumulative roll bonding process parameters    
Abstract:
Accumulative Roll Bonding (ARB) is one of the main techniques to manufacture nanocomposites, however, due to the large number of parameters that control this process, its application is relatively expensive. The present work considers a simple response surface methodology to study the interaction effect between the selected ARB parameters on the tensile strength and the hardness of the ARBed composite sheets. We investigated the characterization, modeling, and numerical optimization of the accumulative roll-bonded (ARBed) AA1050 composite sheets produced using a number of passes ranging from 1 to 7 and reinforced with different SiC content (0, 1, 3, and 5 wt%). The effect of the number of passes and SiC content on the microstructure, phase analysis, tensile, and hardness properties have been investigated for the ARBed sheets and their composites. Also, the fracture surface of the tensile-tested specimens was studied using SEM analysis. Numerical optimization was conducted using the developed model to determine the optimum parameters of the ARB process in the designed experiments. The modelling analysis results confirm the significance of the applied ARB parameters on the properties of the ARBed sheet composites. The numerical optimization analysis indicates the optimum ARB factors are 7 passes and 3.2 wt% of SiC content to produce an AA1050/Ni-SiC composite sheet with 249.2 MPa tensile strength and 107.8 HV hardness.
   
     
 
       

Author Related Publications

  • Adel Fathy Meselhy Ibrahiem, "Effect of matrix/reinforcement particle size ratio (PSR) on the mechanical properties of extruded Al–SiC composites", Springer, 2014 More
  • Adel Fathy Meselhy Ibrahiem, "The effect of Mg add on morphology and mechanical properties of Al–xMg/10Al2O3 nanocomposite produced by mechanical alloying", Elsevier, 2014 More
  • Adel Fathy Meselhy Ibrahiem, "Effect of Iron Addition on the Microstructure, Mechanical and Magnetic Properties of Al-Matrix Composite Produced by Powder Metallurgy Route", Elsevier, 2014 More
  • Adel Fathy Meselhy Ibrahiem, "Compressive and wear resistance of nanometric alumina reinforced copper matrix composites", SciVerse ScienceDirect, 2011 More
  • Adel Fathy Meselhy Ibrahiem, "Prediction of abrasive wear rate of in situ Cu–Al2O3 nanocomposite using artificial neural networks", Springer-Verlag London Limited, 2011 More

Department Related Publications

  • Soliman Soliman Soliman Alieldien, "A first-order shear deformation finite element model for elastostatic analysis of laminated composite plates and the equivalent functionally graded plates", Ain Shams Engineering Journal, 2011 More
  • Soliman Soliman Soliman Alieldien, "Size-dependent analysis of functionally graded ultra-thin films", Structural Engineering and Mechanics, Vol. 44, No. 4 (2012) 431-448, 2012 More
  • Soliman Soliman Soliman Alieldien, "Bending Analysis of Ultra-thin Functionally Graded Mindlin Plates Incorporating Surface Energy Effects", International Journal of Mechanical Sciences, 2013 More
  • Soliman Soliman Soliman Alieldien, "Finite element analysis of functionally graded nano-scale films", Finite Elements in Analysis and Design, 2013 More
  • Soliman Soliman Soliman Alieldien, "Finite Element Analysis of the Deformation of Functionally Graded Plates under Thermomechanical Loads", Mathematical Problems in Engineering, 2013 More
Tweet