Static analysis of functionally graded plate structures resting on variable elastic foundation under various boundary conditions

Faculty Engineering Year: 2023
Type of Publication: ZU Hosted Pages: 775-806.
Authors:
Journal: Acta Mechanica Springer Volume: 2
Keywords : Static analysis , functionally graded plate structures    
Abstract:
Functionally graded materials are widely utilized in several industrial applications, and their accurate modeling is challenging for researchers, principally for FGM nanostructures. This study develops and presents a quasi-3D analytical plate theory to explore the bending behavior of a new model of FG plate structures (FGPSs), resting on modified four parameters Winkler/Pasternak elastic foundations, under various boundary conditions. For this context, different types of functionally graded nanoplates (FGNPs), including (i) the classical FG nanoplate, (ii) the FG sandwich nanoplate, (iii) the trigonometric FG nanoplate of type A, and (4) the trigonometric FG nanoplate of type B as well as their macro-counterparts are also examined. Cosine functions describe the material gradation and material properties through the thickness of the FGNPs. The modified continuum nonlocal strain gradient theory is utilized to include the material and geometrical nanosize length scales. The kinematic relations of the plate are achieved according to hybrid hyperbolic-parabolic functions to satisfy parabolic variation of shear along the thickness of FGNP and zero shears at the inferior and superior surfaces. The equilibrium equations are obtained using the virtual work principle and solved using the Galerkin method to cover various boundary conditions. The results for the macro-counterparts of FGNPs are obtained by taking the small-scale parameters zero in the special cases. The precision and consistency of the generated analytical model are confirmed by comparing the findings to results from the scientific literature.
   
     
 
       

Author Related Publications

  • Mohammed Abdelmoniem Mohamed Eltaher , "Vibrations and stress analysis of rotating perforated beams by using finite elements method", Techno-Press, Ltd., 2021 More
  • Mohammed Abdelmoniem Mohamed Eltaher , "Free vibration of porous FG nonlocal modified couple nanobeams via a modified porosity model", Techno press, 2021 More
  • Mohammed Abdelmoniem Mohamed Eltaher , "Vibration of nonlinear graduation of nano-Timoshenko beam considering the neutral axis position", ScienceDirect, 2014 More
  • Mohammed Abdelmoniem Mohamed Eltaher , "Surface and thermal load effects on the buckling of curved nanowires", Sciencedirect, 2014 More
  • Mohammed Abdelmoniem Mohamed Eltaher , "Modeling of viscoelastic contact-impact problems", journal homepage: www.elsevier.com/locate/apm, 2009 More

Department Related Publications

  • Soliman Soliman Soliman Alieldien, "A first-order shear deformation finite element model for elastostatic analysis of laminated composite plates and the equivalent functionally graded plates", Ain Shams Engineering Journal, 2011 More
  • Soliman Soliman Soliman Alieldien, "Size-dependent analysis of functionally graded ultra-thin films", Structural Engineering and Mechanics, Vol. 44, No. 4 (2012) 431-448, 2012 More
  • Soliman Soliman Soliman Alieldien, "Bending Analysis of Ultra-thin Functionally Graded Mindlin Plates Incorporating Surface Energy Effects", International Journal of Mechanical Sciences, 2013 More
  • Soliman Soliman Soliman Alieldien, "Finite element analysis of functionally graded nano-scale films", Finite Elements in Analysis and Design, 2013 More
  • Soliman Soliman Soliman Alieldien, "Finite Element Analysis of the Deformation of Functionally Graded Plates under Thermomechanical Loads", Mathematical Problems in Engineering, 2013 More
Tweet