Free Vibration Characteristics of Bidirectional Graded Porous Plates with Elastic Foundations Using 2D-DQM

Faculty Engineering Year: 2022
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Mathematics MDPI Volume:
Keywords : Free Vibration Characteristics , Bidirectional Graded Porous Plates    
Abstract:
This manuscript develops for the first time a mathematical formulation of the dynamical behavior of bi-directional functionally graded porous plates (BDFGPP) resting on a Winkler–Pasternak foundation using unified higher-order plate theories (UHOPT). The kinematic displacement fields are exploited to fulfill the null shear strain/stress at the bottom and top surfaces of the plate without needing a shear factor correction. The bi-directional gradation of materials is proposed in the axial (x-axis) and transverse (z-axis) directions according to the power-law distribution function. The cosine function is employed to define the distribution of porosity through the transverse zdirection. Equations of motion in terms of displacements and associated boundary conditions are derived in detail using Hamilton’s principle. The two-dimensional differential integral quadrature method (2D-DIQM) is employed to transform partial differential equations of motion into a system of algebraic equations. Parametric analysis is performed to illustrate the effect of kinematic shear relations, gradation indices, porosity type, elastic foundations, geometrical dimensions, and boundary conditions (BCs) on natural frequencies and mode shapes of BDFGPP. The effect of the porosity coefficient on the natural frequency is dependent on the porosity type. The natural frequency is dependent on the coupling of gradation indices, boundary conditions, and shear distribution functions. The proposed model can be used in designing BDFGPP used in nuclear, marine, aerospace, and civil structures based on their topology and natural frequency constraints.
   
     
 
       

Author Related Publications

  • Salwa Amien Mohamed ebrhiem, "A novel differential-integral quadrature method for the solution of nonlinear integro-differential equations", John Wiley & Sons Ltd, 2021 More
  • Salwa Amien Mohamed ebrhiem, "Thermal vibration characteristics of pre/post‑buckled bi‑directional functionally graded tapered microbeams based on modifed couple stress Reddy beam theory", Springer, 2020 More
  • Salwa Amien Mohamed ebrhiem, "Nonlinear thermal buckling and postbuckling analysis of bidirectional functionally graded tapered microbeams based on Reddy beam theory", Springer, 2020 More
  • Salwa Amien Mohamed ebrhiem, "New Smoother to Enhance Multigrid-Based Methods for Bratu Problem", Elsevier, 2008 More
  • Salwa Amien Mohamed ebrhiem, "Optimally efficient multigrid algorithms for incompressible Euler equations", Emerald Group Publishing Limited, 2008 More

Department Related Publications

  • Ola Ragab Abdou Mohamed, "Analysis of Composite Plates Using Moving Least Squares Differential Quadrature Method", Science Direct, 2014 More
  • Ola Ragab Abdou Mohamed, "Efficient Quadrature Solution for Composite Plate Problems", medwelljournals, 2014 More
  • Rasha Ibrahiem Saleh Mohamed, "Generalized extended method for solution of nonlinear diffusion equations", مجلة الهندسة والعلوم التطبيقية, 2014 More
  • Mohamed Mohamed Ali Mohamed Saied, "Three Resultant Applications In Surface Modeling For Computer Graphics", Second National Conference of Mathematics, Cairo 6-11 April 1996, 1996 More
  • Ahmed Saad Rashed Rashed Elsahar, "Similarity Analysis of Mass and Heat Transfer of FHD Steady Flow of Nanofluid Incorporating Magnetite Nanoparticles (Fe3O4)", East African Scholars Publisher, Kenya, 2020 More
Tweet