Utilizing Artificial Intelligence Approaches to Determine the Shear Strength of Steel Beams with Flat Webs

Faculty Engineering Year: 2023
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Metals MDPI Volume:
Keywords : Utilizing Artificial Intelligence Approaches , Determine the Shear    
Abstract:
Steel beams’ shear strength is one of the most important factors that influence how quickly webs buckle. Despite extensive studies having been performed over the previous three decades, the existing procedures did not achieve the necessary reliability to predict the ultimate shear resistance of plate girders. New techniques called Learner Techniques have started to be used over the last few years; these techniques were applied to calculate the steel beam shear strength. In this study, a Regression Learner Techniques model was built using data from 100 test results from previously published research. Based on the geometric and material properties of the web and flanges available in the published tests, a model was built using Artificial Neural Networks. Based on sensitivity analysis, a Cascade Forward Backpropagation Neural Networks (CFBNN) approach was utilized to anticipate the shear strength of steel beams. The proposed models outperformed current hybrid artificial intelligence models developed using the same collected datasets and demonstrated to accurately predict the ultimate shear strength. The performance of the models was evaluated using a range of statistical assessment methods, which led to a valuable conclusion. The CFBNN model achieved the highest root mean square (R2 = 0.95). The results corresponding to each test were verified by specimen shear strength values calculated by a theoretical approach. The resultant maximum shear force obtained by the proposed modified equation was compared with the experimental results and the shear force was estimated using two different approaches proposed by the European code. Finally, two approaches were used to verify the proposed model. The first approach was the data reported from an experimental shear test program conducted by the authors, and the second was the results of the shear values acquired experimentally by other researchers. Based on the test results of the previous studies and the current work, the suggested model gives an adequate degree of accuracy for estimating the shear strength of steel beams.
   
     
 
       

Author Related Publications

  • Ibrahim Attia Abdelmegeed Abdelgawad, "Flexural response and load capacity of reinforced concrete beams strengthened with reinforced mortar layer", Elsevier, 2021 More
  • Ibrahim Attia Abdelmegeed Abdelgawad, "Experimental and theoretical study on the compressive strength of the high strength concrete incorporating steel fiber and metakaolin", Elsevier, 2021 More
  • Ibrahim Attia Abdelmegeed Abdelgawad, "Experimental study of the influence of adhesive properties and bond length on the bond behaviour of NSM FRP bars in concrete", Taylor and Francis, 2016 More
  • Ibrahim Attia Abdelmegeed Abdelgawad, "Experimental and analytical investigation into the flexural performance of RC beams with partially and fully bonded NSM FRP bars/strips", Composite Structures, 2015 More
  • Ibrahim Attia Abdelmegeed Abdelgawad, "Flexural behavior of RC beams strengthened by NSM GFRP Bars having different end conditions", Elsevier, 2016 More

Department Related Publications

  • Ahmed Mohamed Hassan Ali Youssief, "Densification behavior and mechanical properties of niobium-oxide-doped alumina ceramics", Goller Verlag, 2013 More
  • Ahmed Mohamed Hassan Ali Youssief, "Toughening and strengthening of Nb2O5 doped zirconia/alumina (ZTA) composites", Elsevier, 2015 More
  • Selem Saleh Elsayed Ahmed Dawod, "Contribution of retardation mechanisms on the behaviour of fatigue crack growth in steel structures", 1st International Conference in Civil Engineering, Helwan University, Egypt, pp.172-182., 1998 More
  • Selem Saleh Elsayed Ahmed Dawod, "Effect of coarse aggregate type on the mechanical behavior of high strength concrete", 5th International Conference in Building materials and structural Engineering, Academy of Graduate Studies, Tripoli, Libya, pp.140-151. 2010., 2010 More
  • Selem Saleh Elsayed Ahmed Dawod, "FCG Behavior in Parallel Direction of Welded Austenitic Stainless Steel Plate", AEIC 12, 2012, 2012 More
Tweet