Zagazig University Digital Repository
Home
Thesis & Publications
All Contents
Publications
Thesis
Graduation Projects
Research Area
Research Area Reports
Search by Research Area
Universities Thesis
ACADEMIC Links
ACADEMIC RESEARCH
Zagazig University Authors
Africa Research Statistics
Google Scholar
Research Gate
Researcher ID
CrossRef
New Improved Multi-Objective Gorilla Troops Algorithm for Dependent Tasks Offloading problem in Multi-Access Edge Computing
Faculty
Computer Science
Year:
2023
Type of Publication:
ZU Hosted
Pages:
Authors:
Journal:
Journal of Grid Computing SpringerLink
Volume:
Keywords :
, Improved Multi-Objective Gorilla Troops Algorithm , Dependent
Abstract:
Computational offloading allows lightweight battery-operated devices such as IoT gadgets and mobile equipment to send computation tasks to nearby edge servers to be completed, which is a challenging problem in the multi-access edge computing (MEC) environment. Numerous conflicting objectives exist in this problem; for example, the execution time, energy consumption, and computation cost should all be optimized simultaneously. Furthermore, offloading an application that consists of dependent tasks is another important issue that cannot be neglected while addressing this problem. Recent methods are single objective, computationally expensive, or ignore task dependency. As a result, we propose an improved Gorilla Troops Algorithm (IGTA) to offload dependent tasks in the MEC environments with three objectives: 1-Minimizing the execution latency of the application, 2-energy consumption of the light devices, 3-the used cost of the MEC resources. Furthermore, it is supposed that each MEC supports many charge levels to provide more flexibility to the system. Additionally, we have extended the operation of the standard Gorilla Troops Algorithm (GTO) by adopting a customized crossover operation to improve its search strategy. A Max-To-Min (MTM) load-balancing strategy was also implemented in IGTA to improve the offloading operation. Relative to GTO, IGTA has reduced latency by 33%, energy consumption by 93%, and cost usage by 34.5%. We compared IGTA with other Optimizers in this problem, and the results showed the superiority of IGTA.
Author Related Publications
Department Related Publications
Osama Mohamed Abdelsalam Ahmed Elkomy, "MT-nCov-Net: A Multitask Deep-Learning Framework for Efficient Diagnosis of COVID-19 Using Tomography Scans", IEEE, 2021
More
Osama Mohamed Abdelsalam Ahmed Elkomy, "Two-Stage Deep Learning Framework for Discrimination between COVID-19 and Community-Acquired Pneumonia from Chest CT scans.", ELSEVIER, 2021
More
Osama Mohamed Abdelsalam Ahmed Elkomy, "Efficient model for emergency departments: Real case study", Computers, Materials and ContinuaComputers, Materials and Continua, 2022
More
Ehab Roshdy Mohamed, "SEMANTIC REPRESENTATION OF MUSIC DATABASE USING NEW ONTOLOGY-BASED SYSTEM", Journal of Theoretical and Applied Information Technology, 2020
More
Khalied Mohamed Hosny, "SEMANTIC REPRESENTATION OF MUSIC DATABASE USING NEW ONTOLOGY-BASED SYSTEM", Journal of Theoretical and Applied Information Technology, 2020
More
جامعة المنصورة
جامعة الاسكندرية
جامعة القاهرة
جامعة سوهاج
جامعة الفيوم
جامعة بنها
جامعة دمياط
جامعة بورسعيد
جامعة حلوان
جامعة السويس
شراقوة
جامعة المنيا
جامعة دمنهور
جامعة المنوفية
جامعة أسوان
جامعة جنوب الوادى
جامعة قناة السويس
جامعة عين شمس
جامعة أسيوط
جامعة كفر الشيخ
جامعة السادات
جامعة طنطا
جامعة بنى سويف