Genome editing: a tool from the vault of science for engineering climate-resilient cereals

Faculty Agriculture Year: 2021
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Harsh environment and plant resilience Springer Volume:
Keywords : Genome editing: , tool from , vault , science    
Abstract:
In the present scenario, the two global issues are food security and climate change. These issues are due to a lethal combination of various factors, such as increasing world population, shrinking agricultural land, dwindling agricultural resources, and erratic weather patterns. All these factors are an indication of the looming food crisis, which will worsen due to global warming. Environmental changes, such as extremes of temperature, and erratic precipitation patterns negatively alter the plant physiology, metabolism, biochemistry, soil characteristics, and microbe abundance. As a result, a considerable burden is inflicted on each farmer’s spine as well as the field’s productivity. Therefore, to improve the food and nutritional security, the plant biologist and researchers are compelled to aim for quick, sustainable, and eco-friendly technologies that enhance “climate-resiliency” in crops under current agriculture practices. In this aspect, many biology-revolutionizing genome-editing approaches have come into existence since the year 2005. It includes multiple platforms such as clustered regularly interspaced short palindromic repeats (CRISPR/Cas9 and CRISPR/Cpf1), zinc finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs). Because of the simplicity, high efficiency enabled precise modifications at any genomic loci-of-interest (native endogenous gene or cis/trans-gene insertion), ability to discover novel traits, and accelerate trait development, the plant scientists have created multiple “climate change-resilient crops” especially cereals within their labs. These edited plants have been modified in such a way that they can withstand a broad spectrum of abiotic stresses such as heat, cold, salinity, drought, flood/submergence, pollutants, as well as biotic pests, pathogens, and weeds. As a result, in this chapter, the focus is on enlisting all the successful reports related to the use of genome-editing tools in reshaping the cereals’ climate-resiliency.
   
     
 
       

Author Related Publications

  • Khalid Fathi AbdulMuttalib Mohammed, "Mapping association of molecular markers and sheath blight (Rhizoctonia solani) disease resistance and identification of novel resistance sources and loci in rice", Springer, 2018 More
  • Khalid Fathi AbdulMuttalib Mohammed, "DISTRIBUTION OF MATING TYPE ALLELES AND FERTILITY OF MAGNAPORTHE ORYZAE ISOLATES IN SOUTH INDIA", International Journal of Advanced Research, 2016 More
  • Khalid Fathi AbdulMuttalib Mohammed, "Function identification and characterization of Oryza sativa ZRT and IRT-like proteins computationally for nutrition and biofortification in rice", Taylor & Francis, 2022 More
  • Khalid Fathi AbdulMuttalib Mohammed, "CRISPR/Cas9‐mediated homology donor repair base editing confers glyphosate resistance to rice (Oryza sativa L.)", Frontiers, 2023 More
  • Khalid Fathi AbdulMuttalib Mohammed, "?Two decades of omics in bacterial wilt resistance in Solanaceae, What we learned", Science Direct, 2022 More

Department Related Publications

  • Ahmed Salaheldeen Mohamed Abdelrahman Eldomyaty, "IDENTIFICATION OF MOLECULAR MARKERS FOR SALT AND DROUGHT TOLERANCE USING BULKED SEGREGANT ANALYSIS (BSA) IN BREAD WHEAT (Triticum aestivum L.)", Zagazig Journal of Agricultural Research, 2014 More
  • Abdallah Abdelaziem Hassanin Safan, "Purification and Modes of Antifungal Actionby Vicia faba cv. Egypt Trypsin Inhibitor", School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China., 2010 More
  • Abdallah Abdelaziem Hassanin Safan, "Isolation of a New Trypsin Inhibitor from the Faba Bean (Vicia faba cv.Giza 843) with Potential Medicinal Applications", School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China., 2011 More
  • Abdallah Abdelaziem Hassanin Safan, "Assessment of the R2R3 MYB gene expression profile during tomato fruit development using in silico analysis, quantitative and semi-quantitative RT-PCR", Elsevier, 2022 More
  • Abdallah Abdelaziem Hassanin Safan, "Genetic and Morphological Diversity Assessment of Five Kalanchoe Genotypes by SCoT, ISSR and RAPD-PCR Markers", MDPI, 2022 More
Tweet