Collaborative Screening of COVID-19-like Disease from Multi-Institutional Radiographs: A Federated Learning Approach

Faculty Computer Science Year: 2022
Type of Publication: ZU Hosted Pages: 4766
Authors:
Journal: Mathematics MDPI Volume: Volume 10
Keywords : Collaborative Screening , COVID-19-like Disease from Multi-Institutional    
Abstract:
COVID-19-like pandemics are a major threat to the global health system have the potential to cause high mortality across age groups. The advance of the Internet of Medical Things (IoMT) technologies paves the way toward developing reliable solutions to combat these pandemics. Medical images (i.e., X-rays, computed tomography (CT)) provide an efficient tool for disease detection and diagnosis. The cost, time, and efforts for acquiring and annotating, for instance, large CT datasets make it complicated to obtain large numbers of samples from a single institution. However, owing to the necessity to preserve the privacy of patient data, it is challenging to build a centralized dataset from many institutions, especially during a pandemic. Moreover, heterogeneity between institutions presents a barrier to building efficient screening solutions. Thus, this paper presents a fog-based federated generative domain adaption framework (FGDA), where fog nodes aggregate patients’ data necessary to collaboratively train local deep-learning models for disease screening in medical images from different institutions. Local differential privacy is presented to protect the local gradients against attackers during the global model aggregation. In FGDA, the generative domain adaptation (DA) method is introduced to handle data discrepancies. Experimental evaluation on a case study of COVID-19 segmentation demonstrated the efficiency of FGDA over competing learning approaches with statistical significance.
   
     
 
       

Author Related Publications

  • Hosam Rada mohamed abdel megeed hawash, "RCTE: A reliable and consistent temporal-ensembling framework for semi-supervised segmentation of COVID-19 lesions", ElSEVIER, 2021 More
  • Hosam Rada mohamed abdel megeed hawash, "PV-Net: An innovative deep learning approach for efficient forecasting of short-term photovoltaic energy production", ElSEVIER, 2021 More
  • Hosam Rada mohamed abdel megeed hawash, "Two-Stage Deep Learning Framework for Discrimination between COVID-19 and Community-Acquired Pneumonia from Chest CT scans", ElSEVIER, 2021 More
  • Hosam Rada mohamed abdel megeed hawash, "Deep learning approaches for human centered IoT applications in smart indoor environments: a contemporary survey", Springer, 2021 More
  • Hosam Rada mohamed abdel megeed hawash, "ST-DeepHAR: Deep Learning Model for Human Activity Recognition in IoHT Applications", IEEE, 2020 More

Department Related Publications

  • Abdallah Gamal abdallah mahmoud, "A Group Decision Making Framework Based on Neutrosophic TOPSIS Approach for Smart Medical Device Selection", Springer US, 2019 More
  • Ahmed Salah Mohamed Mostafa, "Real-Time and Automatic System for Performance Evaluation of Karate Skills Using Motion Capture Sensors and Continuous Wavelet Transform", Hindawi, 2023 More
  • Ibrahiem Mahmoud Mohamed Elhenawy, "Improving crisis events detection using distilbert with hunger games search algorithm", MDPI, 2022 More
  • Abdallah Gamal abdallah mahmoud, "Modern Soft Computing: Techniques and Applications", 2024 More
Tweet