Computational Methods to Mitigate the Effect of High Penetration of Renewable Energy Sources on Power System Frequency Regulation: A Comprehensive Review

Faculty Engineering Year: 2022
Type of Publication: ZU Hosted Pages: pages703–726
Authors:
Journal: Archives of Computational Methods in Engineering Springer Nature Volume: 30
Keywords : Computational Methods , Mitigate , Effect , High Penetration    
Abstract:
Depletion of fossil fuel, global warming, and their environmental pollution clarify the importance of renewable energy sources (RESs). However, high penetration of RESs decreases power systems inertia, hence, the system becomes more sensitive to disturbances. This results in problems with frequency control because it increases the rate of change of frequency and may lead to load shedding or tripping of generating units. This paper aims at introducing a comprehensive survey of the effects of the increase in RESs on power system inertia and frequency. Different models of wind-driven and photovoltaic systems used for frequency control studies have been introduced. The up-to-date effective frequency regulation methods which can be used with highly RESs penetrated power systems have been revised and compared. These methods include virtual inertia-based methods depending on energy storage devices, de-loading of renewable energy sources, various inertial response techniques and demand response at load section including under frequency load shedding and electric vehicles. Extensive comparisons among these methods have been carried to guide power system designers, operators, researchers and grid codes taskforces in proper incorporation of RESs for frequency regulation of power systems
   
     
 
       

Author Related Publications

    Department Related Publications

    • Raef Seam Sayed Ahmed, "Model predictive control algorithm for fault ride-through of stand-alone microgrid inverter", Elsevier Ltd., 2021 More
    • Enas Ahmed Mohamed Abdelhay, "Recent Maximum Power Point Tracking Methods for Wind Energy Conversion System", Elsevier, 2024 More
    • Raef Seam Sayed Ahmed, "Optimal design and analysis of DC–DC converter with maximum power controller for stand-alone PV system", Elsevier Ltd., 2021 More
    • Raef Seam Sayed Ahmed, "Parameters identification and optimization of photovoltaic panels under real conditions using Lambert W-function", Elsevier Ltd., 2021 More
    • Mohammed Abdelhamied Abdelnaeem , "Artificial ecosystem-based optimiser to electrically characterise PV generating systems under various operating conditions reinforced by experimental validations", Wiley, 2021 More
    Tweet