Predicting Insolvency of Insurance Companies in Egyptian Market Using Bagging and Boosting Ensemble Techniques

Faculty Computer Science Year: 2022
Type of Publication: ZU Hosted Pages: 117304-117314
Authors:
Journal: IEEE Access Ieee Volume: 10
Keywords : Predicting Insolvency , Insurance Companies , Egyptian Market    
Abstract:
Insolvency is a crucial problem for several insurance companies that suffer from it. This problem has direct or indirect effects on both the people working in the financial business and normal citizens. Thus, in insurance companies, the ability to predict insolvency is in great demand. There are several efforts proposed to predict insurance company insolvency using computer science methods (e.g., support vector machine and fuzzy systems). Each country has its own data patterns due to interior matters. Thus, insurance companies from different countries may have different data patterns. Consequently, the utilized predictive model should adapt to the dataset at hand. To our best knowledge, despite there are several efforts to build an insolvency predictive model, none of these efforts explored the Egyptian market. In addition, even the existing efforts did not utilize the ensemble learning methods in the insolvency prediction problem. In this context, we have two main contributions to this work. First, we proposed the first public access dataset of Egyptian insurance companies. The collected dataset was gathered from 11 Egyptian insurance companies during the years 1999 to 2019. The dataset consists of a set of 22 ratios (21 input features and one output feature), e.g., retention and investment yield alongside the solvency ratio (i.e., the target feature). In the second contribution, we proposed exploring the performance of the ensemble learning methods to address the insolvency prediction problem. Thus, we proposed building several insolvency predictive models using ensemble learning and classic machine learning models. Next, the proposed models are evaluated on different accuracy metrics, e.g., Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The experimental results revealed that the ensemble learning-based models outperformed the classic machine learning-based models. Moreover, the correlation analysis between the utilized 22 financial ratios revealed that the most significant ratios, for the task of predicting the solvency ratio, are the technical provisions to shareholders’ funds, insurance companies’ debit balances to shareholders, and earnings after taxes to shareholders’ funds.
   
     
 
       

Author Related Publications

  • Ahmed Salah Mohamed Mostafa, "Artificial Intelligence and Machine Learning-Driven Decision-Making", Hindawi, 2021 More
  • Ahmed Salah Mohamed Mostafa, "Usages of Spark Framework with Different Machine Learning Algorithms", Hindawi, 2021 More
  • Ahmed Salah Mohamed Mostafa, "Efficient index-independent approaches for the collective spatial keyword queries", elsevier, 2021 More
  • Ahmed Salah Mohamed Mostafa, "A robust UWSN handover prediction system using ensemble learning", MDPI, 2021 More
  • Ahmed Salah Mohamed Mostafa, "Price Prediction of Seasonal Items Using Machine Learning and Statistical Methods", Tech Science Press, 2021 More

Department Related Publications

  • Ahmed Raafat Abass Mohamed Saliem, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021 More
  • Ibrahiem Mahmoud Mohamed Elhenawy, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021 More
  • Ahmed Raafat Abass Mohamed Saliem, "Using General Regression with Local Tuning for Learning Mixture Models from Incomplete Data Sets", ScienceDirect, 2010 More
  • Ahmed Raafat Abass Mohamed Saliem, "On determining efficient finite mixture models with compact and essential components for clustering data", ScienceDirect, 2013 More
  • Ahmed Raafat Abass Mohamed Saliem, "Unsupervised learning of mixture models based on swarm intelligence and neural networks with optimal completion using incomplete data", ScienceDirect, 2012 More
Tweet