Journal: |
978-3-031-21746-3
Springer
|
Volume: |
|
Abstract: |
Many countries worldwide, particularly those with arid climates, face a serious problem regarding freshwater scarcity. Climate change, accompanied by economic and population growth, are worsening the problem. Remote communities with no access to freshwater are suffering the most from this problem. Clouds, fog near land, and water vapor (humidity) in the surrounding air are the three most common kinds of atmospheric water found in the atmosphere. Humidity in the surrounding air represents a great and reliable source for providing fresh water, especially if it can be extracted in an affordable and efficient manner. Water extraction from the atmosphere, unlike desalination, does not have a significant impact on the hydrological cycle or on vital water sources in the vicinity. The water quality is also adequate for drinking and other residential and agricultural uses because the source of the atmospheric water is usually clean. Depending on the atmospheric water source, the AWH technologies can be categorized into artificial rain, fog water and dew water collection technologies. In arid coastal areas, fog water collection technologies can be feasible and accessible technologies to alleviate the scarcity of freshwater. Moreover, fog water is often collected in a rectangular mesh perpendicular to the wind, which traps fog droplets. In comparison, dew water collection technologies are minimally susceptible to meteorological and geographical limitations compared with fog collection methods. Dew collection technologies are considered condensation-based technologies, which fall into three primary categories: direct condensation harvesting, vapor concentration by adsorbent material, and by-product collection from an integrated system. Furthermore, the vapor concentration and water vapor condensation processes can be classified as passive or active, depending on the energy input to the system. In this chapter, the state-of-the-art of various AWH technologies will be introduced, in addition to techno-economic comparative assessment of these technologies
|
|
|