A novel artificial hummingbird algorithm for integrating renewable based biomass distributed generators in radial distribution systems

Faculty Engineering Year: 2022
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Applied Energy Elsevier Volume:
Keywords : , novel artificial hummingbird algorithm , integrating renewable    
Abstract:
Improving the performance of the electric distribution network is essential to meet the needs of the customer and guarantee the service continuity. Installing generators with small sizes known as distributed generators (DGs) can contribute to enhance the network operation by mitigating the network loss and improving the voltage profile. Integrating these generators in inappropriate places can cause serious consequences to the network operation. Therefore, this paper proposes a novel metaheuristic approach of artificial hummingbird algorithm (AHA) to identify the best locations and sizes of biomass-based DGs in radial distribution network. The proposed approach has enriched exploration and exploitation phases that enhancing its search capability and avoiding stuck in local optima. The network active power loss and the voltage deviation are selected as the targets to be minimized. Moreover, a new version of AHA is programmed to solve multi-objective problem with the purpose of mitigating both targets. The analysis is conducted on three radial distribution networks of IEEE 33-bus, IEEE 69-bus, and IEEE 119-bus. Three scenarios are implemented in each network, the first one is minimizing the active power loss, the second one is mitigating the voltage deviation, and the last one is multi-objective problem. Also, biomass-based DGs with unity, fixed, and optimal power factors are analyzed. Excessive comparison to fractal search algorithm, particle swarm optimizer, genetic algorithm, the whale optimization algorithm, sperm swarm optimization, tunicate swarm algorithm, pathfinder algorithm, seagull optimization algorithm, and sine cosine algorithm, multi-objective water cycle algorithm, multi-objective grey wolf optimizer, and multi-objective sparrow search algorithm is conducted. Moreover, statistical tests of Wilcoxon, Friedman, ANOVA, and Kruskal Wallis are performed to assess the performance of the proposed approach. The gotten results confirmed the preference and competence of the proposed approach in integrating the biomass-based DGs in radial distribution networks.
   
     
 
       

Author Related Publications

  • Ahmed Fathy Mohamed Ali Ali, "Optimization of a PV fed water pumping system without storage based on teaching-learning-based optimization algorithm and artificial neural network", ELSEVIER, 2016 More
  • Ahmed Fathy Mohamed Ali Ali, "A comparison of different global MPPT techniques based on meta-heuristic algorithms for photovoltaic system subjected to partial shading conditions", Elsevier Ltd., 2017 More
  • Ahmed Fathy Mohamed Ali Ali, "Grey Wolf Optimizer for Optimal Sizing and Siting of Energy Storage System in Electric Distribution Network", Taylor & Francis, 2017 More
  • Ahmed Fathy Mohamed Ali Ali, "Parameter estimation of photovoltaic system using imperialist competitive algorithm", Elsevier Ltd., 2017 More
  • Ahmed Fathy Mohamed Ali Ali, "A novel optimal parameters identification of triple-junction solar cell based on a recently meta-heuristic water cycle algorithm", Elsevier Ltd., 2017 More

Department Related Publications

  • Raef Seam Sayed Ahmed, "Model predictive control algorithm for fault ride-through of stand-alone microgrid inverter", Elsevier Ltd., 2021 More
  • Enas Ahmed Mohamed Abdelhay, "Recent Maximum Power Point Tracking Methods for Wind Energy Conversion System", Elsevier, 2024 More
  • Raef Seam Sayed Ahmed, "Optimal design and analysis of DC–DC converter with maximum power controller for stand-alone PV system", Elsevier Ltd., 2021 More
  • Raef Seam Sayed Ahmed, "Parameters identification and optimization of photovoltaic panels under real conditions using Lambert W-function", Elsevier Ltd., 2021 More
  • Attia Abdelaziz Hussien Ali, "Artificial ecosystem-based optimiser to electrically characterise PV generating systems under various operating conditions reinforced by experimental validations", Wiley, 2021 More
Tweet