Diversity-Based Evolutionary Population Dynamics: A New Operator for Grey Wolf Optimizer

Faculty Science Year: 2022
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Processes MDPI Volume:
Keywords : Diversity-Based Evolutionary Population Dynamics: , New Operator , Grey    
Abstract:
Evolutionary Population Dynamics (EPD) refers to eliminating poor individuals in nature, which is the opposite of survival of the fittest. Although this method can improve the median of the whole population of the meta-heuristic algorithms, it suffers from poor exploration capability to handle high-dimensional problems. This paper proposes a novel EPD operator to improve the search process. In other words, as the primary EPD mainly improves the fitness of the worst individuals in the population, and hence we name it the Fitness-Based EPD (FB-EPD), our proposed EPD mainly improves the diversity of the best individuals, and hence we name it the Diversity-Based EPD (DB- EPD). The proposed method is applied to the Grey Wolf Optimizer (GWO) and named DB-GWO-EPD. In this algorithm, the three most diversified individuals are first identified at each iteration, and then half of the best-fitted individuals are forced to be eliminated and repositioned around these diversified agents with equal probability. This process can free the merged best individuals located in a closed populated region and transfer them to the diversified and, thus, less-densely populated regions in the search space. This approach is frequently employed to make the search agents explore the whole search space. The proposed DB-GWO-EPD is tested on 13 high-dimensional and shifted classical benchmark functions as well as 29 test problems included in the CEC2017 test suite, and four constrained engineering problems. The results obtained by the proposal upon implemented on the classical test problems are compared to GWO, FB-GWO-EPD, and four other popular and newly proposed optimization algorithms, including Aquila Optimizer (AO), Flow Direction Algorithm (FDA), Arithmetic Optimization Algorithm (AOA), and Gradient-based Optimizer (GBO). The experiments demonstrate the significant superiority of the proposed algorithm when applied to a majority of the test functions, recommending the application of the proposed EPD operator to any other meta-heuristic whenever decided to ameliorate their performance.
   
     
 
       

Author Related Publications

  • Mohamed El Sayed Ahmed Muhamed, "A Grunwald–Letnikov based Manta ray foraging optimizer for global optimization and image segmentation", Elsevier, 2020 More
  • Mohamed El Sayed Ahmed Muhamed, "A novel hybrid gradient-based optimizer and grey wolf optimizer feature selection method for human activity recognition using smartphone sensors", MDPI, 2021 More
  • Mohamed El Sayed Ahmed Muhamed, "Efficient schemes for playout latency reduction in P2P-VOD systems", Springer, 2018 More
  • Mohamed El Sayed Ahmed Muhamed, "a novel algorithm for source localization based on nonnegative matrix factroization using \alpha 'beta divergence in chochleagram", WSEAS, 2013 More
  • Mohamed El Sayed Ahmed Muhamed, "Open cluster membership probability based on K-means clustering algorithm", Springer, 2016 More

Department Related Publications

  • Rodyna Ahmed Mahmoud, "Pre-Open Sets with Ideal", Scientific Research Platform (SRP), 2013 More
  • Rodyna Ahmed Mahmoud, "ON BCL-ALGEBRA", Council for Innovative Research, 2013 More
  • Yasser AbdelAziz Amer Tolba, "The improved (G’/G) - expansion method for constructing exact traveling wave solutions for a nonlinear PDE of nanobiosciences", USA, 2013 More
  • Alaa Hassan Attia Hassan, "A Unified Representation of Some Starlike and Convex Harmonic Functions with Negative Coefficients", AGH University of Science and Technology Press, Krakow 2013, Poland, 2013 More
  • Alaa Hassan Attia Hassan, "Generalizations of Hadamard Procuct of Certain Meromorphic Multivalent Functions with Positive Coefficients", Istanbul Universitesi, Turkey, 2013 More
Tweet