A hyper‑heuristic guided by a probabilistic graphical model for single‑objective real‑parameter optimization

Faculty Science Year: 2022
Type of Publication: ZU Hosted Pages:
Authors:
Journal: International Journal of Machine Learning and Cybernetics Springer Volume:
Keywords : , hyper‑heuristic guided by a probabilistic graphical model for single‑objective    
Abstract:
Metaheuristics algorithms are designed to find approximate solutions for challenging optimization problems. The success of the algorithm over a given optimization task relies on the suitability of its search heuristics for the problem-domain. Thus, the design of custom metaheuristic algorithms leads to more accurate solutions. Hyper-heuristics (HH) are important tools commonly used to select low-level heuristics (LLHs) to solve a specific problem. HH are able to acquire knowledge from the problems where they are used. However, as other artificial intelligence tools it is necessary to identify how the knowledge affects the performance of the algorithm. One way to generate such knowledge is to capture interactions between variables using probabilistic graphical models such as Bayesian networks (BN) in conjunction with estimation of distribution algo- rithms (EDA). This article presents a method based on that used an EDA based on BN as a high-level selection mechanism for HH called Hyper-heuristic approach based on Bayesian learning and evolutionary operators (HHBNO). Here the knowledge is extracted form BN to evolve the sequences of LLHs in an online learning process by exploring the inter-dependencies among the LLHs. The proposes approach is tested over CEC’17 set of benchmark function of single-objective real-parameter optimization. Statical tests verifies that the HHBNO  presents competitive results in comparison with other metaheuristic algorithms with high performance in terms of convergence. The generated BN is further visually investigated to display the acquired knowledge during the evolutionary process, and it is constructed with the probabilities of each LLHs.
   
     
 
       

Author Related Publications

  • Mohamed El Sayed Ahmed Muhamed, "A Grunwald–Letnikov based Manta ray foraging optimizer for global optimization and image segmentation", Elsevier, 2020 More
  • Mohamed El Sayed Ahmed Muhamed, "A novel hybrid gradient-based optimizer and grey wolf optimizer feature selection method for human activity recognition using smartphone sensors", MDPI, 2021 More
  • Mohamed El Sayed Ahmed Muhamed, "Efficient schemes for playout latency reduction in P2P-VOD systems", Springer, 2018 More
  • Mohamed El Sayed Ahmed Muhamed, "a novel algorithm for source localization based on nonnegative matrix factroization using \alpha 'beta divergence in chochleagram", WSEAS, 2013 More
  • Mohamed El Sayed Ahmed Muhamed, "Open cluster membership probability based on K-means clustering algorithm", Springer, 2016 More

Department Related Publications

  • Hany Samih Bayoumi Ibrahim, "Passive and active controllers for suppressing the torsional vibration of multiple-degree-of-freedom system", Sage, 2014 More
  • Ahmed Mohamed Khedr Souliman, "SEP-CS: Effective Routing Protocol for Heterogeneous Wireless Sensor Networks", Ad Hoc & Sensor Wireless Networks, 2012 More
  • Ahmed Mohamed Khedr Souliman, "Minimum connected cover of a query region in heterogeneous wireless sensor networks", Information Sciences, 2013 More
  • Ahmed Mohamed Khedr Souliman, "IBLEACH: intra-balanced LEACH protocol for wireless sensor networks", Wireless Netw, 2014 More
  • Ahmed Mohamed Khedr Souliman, "AGENTS FOR INTEGRATING DISTRIBUTED DATA FOR FUNCTION COMPUTATIONS", Computing and Informatics,, 2012 More
Tweet