Modified aquila optimizer for forecasting oil production

Faculty Science Year: 2022
Type of Publication: ZU Hosted Pages:
Authors:
Journal: GEO-SPATIAL INFORMATION SCIENCE Taylor & Francis Group Volume:
Keywords : Modified aquila optimizer , forecasting oil production    
Abstract:
Oil production estimation plays a critical role in economic plans for local governments and organizations. Therefore, many studies applied different Artificial Intelligence (AI) based methods to estimate oil production in different countries. The Adaptive Neuro-Fuzzy Inference System (ANFIS) is a well-known model that has been successfully employed in various applications, including time-series forecasting. However, the ANFIS model faces critical shortcomings in its parameters during the configuration process. From this point, this paper works to solve the drawbacks of the ANFIS by optimizing ANFIS parameters using a modified Aquila Optimizer (AO) with the Opposition-Based Learning (OBL) technique. The main idea of the developed model, AOOBL-ANFIS, is to enhance the search process of the AO and use the AOOBL to boost the performance of the ANFIS. The proposed model is evaluated using real-world oil production datasets collected from different oilfields using several performance metrics, including Root Mean Square Error (RMSE), Mean Absolute Error (MAE), coefficient of determination (R2), Standard Deviation (Std), and computational time. Moreover, the AOOBL-ANFIS model is compared to several modified ANFIS models include Particle Swarm Optimization (PSO)-ANFIS, Grey Wolf Optimizer (GWO)-ANFIS, Sine Cosine Algorithm (SCA)-ANFIS, Slime Mold Algorithm (SMA)-ANFIS, and Genetic Algorithm (GA)-ANFIS, respectively. Additionally, it is compared to well-known time series forecasting methods, namely, Autoregressive Integrated Moving Average (ARIMA), Long Short-Term Memory (LSTM), Seasonal Autoregressive Integrated Moving Average (SARIMA), and Neural Network (NN). The outcomes verified the high performance of the AOOBL-ANFIS, which outperformed the classic ANFIS model and the compared models.
   
     
 
       

Author Related Publications

  • Mohamed El Sayed Ahmed Muhamed, "A Grunwald–Letnikov based Manta ray foraging optimizer for global optimization and image segmentation", Elsevier, 2020 More
  • Mohamed El Sayed Ahmed Muhamed, "A novel hybrid gradient-based optimizer and grey wolf optimizer feature selection method for human activity recognition using smartphone sensors", MDPI, 2021 More
  • Mohamed El Sayed Ahmed Muhamed, "Efficient schemes for playout latency reduction in P2P-VOD systems", Springer, 2018 More
  • Mohamed El Sayed Ahmed Muhamed, "a novel algorithm for source localization based on nonnegative matrix factroization using \alpha 'beta divergence in chochleagram", WSEAS, 2013 More
  • Mohamed El Sayed Ahmed Muhamed, "Open cluster membership probability based on K-means clustering algorithm", Springer, 2016 More

Department Related Publications

  • Heba Ibrahim Mustafa, "Bi Operation and Rough Sets Generalizations", Dixie W Publishing Corporation, U. S. A., 2008 More
  • Alaa Hassan Attia Hassan, "A New Class of Analytic Functions Defined by Using Salagean Operator", Hindawi Publishing Corporation, USA, 2013 More
  • Usama Abdelhamid Ibrahim, "Fuzzy Pairwise Separation Axioms in fuzzy Bitopological spaces", Jöklarannsóknafélag Íslands, 2013 More
  • Huda Ibrahim Sayed Ahmad, ", Multigrid solution of Three Dimensional Biharmonic Equations With Dirichlet Boundary Conditions of Second Kinds", كوريا, 2010 More
  • Huda Ibrahim Sayed Ahmad, "The two variable (G'/G,1/G) -expansion method for finding exact traveling wave solutions of the (3+1) - dimensional nonlinear potential Yu-Toda-Sasa-Fukuyama equation", الصين, 2013 More
Tweet