Fractional-order comprehensive learning marine predators algorithm for global optimization and feature selection

Faculty Science Year: 2022
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Knowledge-Based Systems Elsevier Volume:
Keywords : Fractional-order comprehensive learning marine predators algorithm for    
Abstract:
The topological structure of the search agents in the swarm is a key factor in diversifying the knowledge between the population and balancing the designs of the exploration and intensification stages. Marine Predator Algorithm (MPA) is a recently introduced algorithm that mimics the interaction between the prey and predator in ocean. MPA has a vital issue in its structure. This drawback related to the number of iterations that is divided into the algorithm phases, hence the agents do not have the adequate number of tries to discover the search landscape and exploit the optimal solutions. This situation affects the search process. Therefore, in this paper, the principle of the comprehensive learning strategy and memory perspective of the fractional calculus have been incorporated into MPA. They help to achieve an efficient sharing for the best knowledge and the historical experiences between the agents with the aim of escaping from the local solutions and avoiding the immature convergence. The developed fractional-order comprehensive learning MPA (FOCLMPA) has been examined with several multidimensional benchmarks from the CEC2017 and CEC2020 as challenging tested functions in the numerical validation part. For real-world applications, four engineering problems have been employed and a set of eighteen UCI datasets have been used to demonstrate the developed performance for feature selection optimization problem. The FOCLMPA has been compared with several well-regarded optimization algorithms via numerous statistical and non-parametric analyses to provide unbiased recommendation. The comparisons confirm the superiority and stability of FOCLMPA in handling the series of experiments with high qualified results and remarkable convergence curves.
   
     
 
       

Author Related Publications

  • Mohamed El Sayed Ahmed Muhamed, "A Grunwald–Letnikov based Manta ray foraging optimizer for global optimization and image segmentation", Elsevier, 2020 More
  • Mohamed El Sayed Ahmed Muhamed, "A novel hybrid gradient-based optimizer and grey wolf optimizer feature selection method for human activity recognition using smartphone sensors", MDPI, 2021 More
  • Mohamed El Sayed Ahmed Muhamed, "Efficient schemes for playout latency reduction in P2P-VOD systems", Springer, 2018 More
  • Mohamed El Sayed Ahmed Muhamed, "a novel algorithm for source localization based on nonnegative matrix factroization using \alpha 'beta divergence in chochleagram", WSEAS, 2013 More
  • Mohamed El Sayed Ahmed Muhamed, "Open cluster membership probability based on K-means clustering algorithm", Springer, 2016 More

Department Related Publications

  • Hany Samih Bayoumi Ibrahim, "Passive and active controllers for suppressing the torsional vibration of multiple-degree-of-freedom system", Sage, 2014 More
  • Ahmed Mohamed Khedr Souliman, "SEP-CS: Effective Routing Protocol for Heterogeneous Wireless Sensor Networks", Ad Hoc & Sensor Wireless Networks, 2012 More
  • Ahmed Mohamed Khedr Souliman, "Minimum connected cover of a query region in heterogeneous wireless sensor networks", Information Sciences, 2013 More
  • Ahmed Mohamed Khedr Souliman, "IBLEACH: intra-balanced LEACH protocol for wireless sensor networks", Wireless Netw, 2014 More
  • Ahmed Mohamed Khedr Souliman, "AGENTS FOR INTEGRATING DISTRIBUTED DATA FOR FUNCTION COMPUTATIONS", Computing and Informatics,, 2012 More
Tweet