Efficient high-dimension feature selection based on enhanced equilibrium optimizer

Faculty Science Year: 2022
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Expert Systems With Applications Elsevier Volume:
Keywords : Efficient high-dimension feature selection based , enhanced    
Abstract:
Feature selection (FS) is an important task in any classification process and aims to choose the smallest features number that yields higher classification accuracy. FS can be formulated as a combinatorial NP-hard problem for which robust metaheuristics are used as efficient wrapper-based FS approaches. However, when applied for high dimensional datasets that present large features number and few samples, the effectiveness of such wrapper- metaheuristics degraded, and their computation costs increased. To tackle this problem, we propose in this paper a hybrid FS approach based on the ReliefF filter method and a novel metaheuristic Equilibrium Optimizer (EO). The proposed method, called RBEO-LS, is composed of two phases. In the first phase, the ReliefF algorithm is used as a preprocessing step to assign weights for features, which estimate their relevance to the classification task. In the second phase, the binary EO (BEO) is used as a wrapper search approach. The features are ranked according to their weights and are used for the initialization of the BEO population. We embedded the BEO with a local search strategy to improve its performance by adding relevant features and removing redundant ones from the features subset guided by the features ranking and the Pearson coefficient correlation. The performance of the developed algorithm has been evaluated on sixteen UCI datasets and ten high dimensional biological datasets. The UCI datasets contain a high number of samples and a small or medium number of features. The biological datasets present a high number of features with few samples. The results demonstrate that the use of the ReliefF algorithm and the local search strategy improves the performance of the EO algorithm. The results also show the superiority of the RBEO-LS, among other state-of-the-art approaches.
   
     
 
       

Author Related Publications

  • Mohamed El Sayed Ahmed Muhamed, "A Grunwald–Letnikov based Manta ray foraging optimizer for global optimization and image segmentation", Elsevier, 2020 More
  • Mohamed El Sayed Ahmed Muhamed, "A novel hybrid gradient-based optimizer and grey wolf optimizer feature selection method for human activity recognition using smartphone sensors", MDPI, 2021 More
  • Mohamed El Sayed Ahmed Muhamed, "Efficient schemes for playout latency reduction in P2P-VOD systems", Springer, 2018 More
  • Mohamed El Sayed Ahmed Muhamed, "a novel algorithm for source localization based on nonnegative matrix factroization using \alpha 'beta divergence in chochleagram", WSEAS, 2013 More
  • Mohamed El Sayed Ahmed Muhamed, "Open cluster membership probability based on K-means clustering algorithm", Springer, 2016 More

Department Related Publications

  • Hany Samih Bayoumi Ibrahim, "Passive and active controllers for suppressing the torsional vibration of multiple-degree-of-freedom system", Sage, 2014 More
  • Ahmed Mohamed Khedr Souliman, "SEP-CS: Effective Routing Protocol for Heterogeneous Wireless Sensor Networks", Ad Hoc & Sensor Wireless Networks, 2012 More
  • Ahmed Mohamed Khedr Souliman, "Minimum connected cover of a query region in heterogeneous wireless sensor networks", Information Sciences, 2013 More
  • Ahmed Mohamed Khedr Souliman, "IBLEACH: intra-balanced LEACH protocol for wireless sensor networks", Wireless Netw, 2014 More
  • Ahmed Mohamed Khedr Souliman, "AGENTS FOR INTEGRATING DISTRIBUTED DATA FOR FUNCTION COMPUTATIONS", Computing and Informatics,, 2012 More
Tweet