Parameter extraction of photovoltaic models using a memory-based improved gorilla troops optimizer‏

Faculty Computer Science Year: 2022
Type of Publication: ZU Hosted Pages: 115134
Authors:
Journal: Energy Conversion and Management Pergamon Volume:
Keywords : Parameter extraction , photovoltaic models using , memory-based    
Abstract:
The parameter extraction of the PV model is a challenging issue owing to its multi-model and nonlinear characteristics. Moreover, these characteristics of the problem render the algorithms tackling it susceptible to being stuck in local opt
   
     
 
       

Author Related Publications

  • Karam mohamed goda, "An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: Analysis and validations", Pergamon, 2021 More
  • Karam mohamed goda, "BSMA: A novel metaheuristic algorithm for multi-dimensional knapsack problems: Method and comprehensive analysis", Pergamon, 2021 More
  • Karam mohamed goda, "An Improved Binary Grey-Wolf Optimizer With Simulated Annealing for Feature Selection", IEEE, 2021 More
  • Karam mohamed goda, "Evolutionary algorithm-based convolutional neural network for predicting heart diseases", Elsevier, 2021 More
  • Karam mohamed goda, "An improved gaining-sharing knowledge algorithm for parameter extraction of photovoltaic models", Elsevier, 2021 More

Department Related Publications

  • Mohammed Abdel Basset Metwally Attia, "Discrete greedy flower pollination algorithm for spherical traveling salesman problem", Springer, 2019 More
  • Mohammed Abdel Basset Metwally Attia, "A New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems", Natural Sciences Publishing Cor., 2014 More
  • Saber Mohamed, "Training and Testing a Self-Adaptive Multi-Operator Evolutionary Algorithm for Constrained Optimization", ELSEVEIR, 2015 More
  • Saber Mohamed, "An Improved Self-Adaptive Differential Evolution Algorithm for Optimization Problems", IEEE, 2013 More
  • Saber Mohamed, "Differential Evolution with Dynamic Parameters Selection for Optimization Problems", IEEE, 2014 More
Tweet