Optimal parameter estimation of solid oxide fuel cells model using bald eagle search optimizer

Faculty Engineering Year: 2022
Type of Publication: ZU Hosted Pages: 13657-13669
Authors:
Journal: International Journal of Energy Research John Wiley & Sons, Inc. Volume: 10
Keywords : Optimal parameter estimation , solid oxide fuel    
Abstract:
In this article, a new nature-inspired optimizer based on bald eagles' fish hunting behavior is proposed for accurate parameters estimation of the solid oxide fuel cells stack's model. The optimal estimated values of the seven control parameters are generated by the bald eagle search (BES) optimizer. These parameters have optimized the model of the solid oxide fuel cells stack and formulated it as an optimization problem with associated constraints. The employed BES optimizer is a flexible algorithm with a relatively large population size which effectively improves the optimization process and has the ability to be improved. The BES optimizer is smooth, rapid, and steady in the convergence process. The BES optimizer is a very simple algorithm that consists of three main stages which are selecting hunting space, searching in the hunting area, and swooping stage. The model of the stack is tested at four operating conditions at 3 bar and varied temperatures of 923/973/1023/1073 K. The BES optimizer leads to more accurate parameters with good convergences. The insignificant values of reported worst mean square errors of something around 4.7e-6 V2 points out the full conformity and coincidence between actual and estimated dataset voltage points. In addition to that, the efficacy of the BES optimizer is assured by comparing the results to parameters estimated from some recent techniques. The cropped estimated polarization curves, V-I and P-I, are very close to the measured datasets at various operating conditions. Statistics metrics indicate the robustness and the viability of the BES compared to other recent challenging optimizers.
   
     
 
       

Author Related Publications

  • Attia Abdelaziz Hussien Ali, "Artificial ecosystem-based optimiser to electrically characterise PV generating systems under various operating conditions reinforced by experimental validations", Wiley, 2021 More
  • Attia Abdelaziz Hussien Ali, "An Improved Artificial Jellyfish Search Optimizer for Parameter Identification of Photovoltaic Models", Multidisciplinary Digital Publishing Institute, 2021 More
  • Attia Abdelaziz Hussien Ali, "Parameters identification of PV triple-diode model using improved generalized normal distribution algorithm", Multidisciplinary Digital Publishing Institute, 2021 More
  • Attia Abdelaziz Hussien Ali, "Adaptive and efficient optimization model for optimal parameters of proton exchange membrane fuel cells: A comprehensive analysis", Elsevier, 2021 More
  • Attia Abdelaziz Hussien Ali, "Model parameters extraction of solid oxide fuel cells based on semi-empirical and memory-based chameleon swarm algorithm", Wiley, 2021 More

Department Related Publications

  • Ahmed Mohamed Othman Abdelmaksoud, "Modification of UPFC Circuit to Enhance Dynamics Performance Using Soft Computing Selection", International Journal of Electrical Engineering (IIJEE), 2014 More
  • Ahmed Mohamed Othman Abdelmaksoud, "A New Optimization Approach for Maximizing the Photovoltaic Panel Power Based on Genetic Algorithm and Lagrange Multiplier Algorithm", Inter. Journal of Photoenergy, 2013 More
  • Ahmed Mohamed Othman Abdelmaksoud, "A New Evolutionary Algorithm for the Optimal Sizing of Stand-Alone Photovoltaic System Based on Genetic Algorithm", International Review of Electrical Engineering (IREE), 2013 More
  • Mohamed Abdelfattah Hessien Anany Refaee, "Steady State Modeling and ANFIS Based Analysis of Self-Excited Induction Generator", Multi-Science Publishing Co. Ltd, 2014 More
  • Ahmed Fathy Mohamed Ali Ali, "Comparison among various energy management strategies for reducing hydrogen consumption in a hybrid fuel cell/supercapacitor/battery system", Elsevier, 2019 More
Tweet