Zagazig University Digital Repository
Home
Thesis & Publications
All Contents
Publications
Thesis
Graduation Projects
Research Area
Research Area Reports
Search by Research Area
Universities Thesis
ACADEMIC Links
ACADEMIC RESEARCH
Zagazig University Authors
Africa Research Statistics
Google Scholar
Research Gate
Researcher ID
CrossRef
Hybrid marine predators algorithm for image segmentation: Analysis and validations
Faculty
Computer Science
Year:
2022
Type of Publication:
ZU Hosted
Pages:
3315–3367
Authors:
Mohammed Abdel Basset Metwally Attia
Staff Zu Site
Abstract In Staff Site
Journal:
Artificial Intelligence Review Springer Nature
Volume:
55
Keywords :
Hybrid marine predators algorithm , image segmentation:
Abstract:
Naturally, to analyze an image accurately, all the similar objects within it should be separated to pay attention to the most important object for reaching more details and hence achieving better accuracy. Therefore, multilevel thresholding is an indispensable image processing technique in the field of image segmentation and is employed widely to separate those similar objects. However, with increasing thresholds, the existing image segmentation techniques might suffer from exponentially-grown computational cost and low accuracy due to local optima shortage. Therefore, in this paper, a new image segmentation algorithm based on the improved marine predators algorithm (MPA) is proposed. MPA is improved using a strategy to find a number of the worst solutions within the population then tries to search for other better ones for those solutions by moving them gradually towards the best solutions to avoid accelerating to local optima and randomly within the search space based on a certain probability. In addition, this number of the worst solutions is increased with the iteration. This strategy is known as the linearly increased worst solutions improvement strategy (LIS). Also, we suggested that apply the ranking strategy based on a novel updating scheme, namely ranking-based updating strategy (RUS), on the solutions that could find better solutions in the last number iterations, perIter, in the hope of finding better solutions near it. RUS updates the particles/solutions which could not find better solutions than the best-local one in a number of consecutive iterations, with those that are generated based on a novel updating strategy. LIS is integrated with MPA to produce a new segmentation meta-heuristic algorithm abbreviated as MPALS. Also, MPALS and RUS are combined to tackle ISP in a strong variant abbreviated as HMPA for overcoming the image segmentation problem. The two proposed algorithms are validated on 14 test images and compared with seven state-of-the-arts meta-heuristic algorithms. The experimental results show the effectiveness of HMPA with increasing the threshold levels compared to the seven state-of-the-arts algorithms when segmenting an image, while their performance is roughly the same for the image with a small threshold level.
Author Related Publications
Mohammed Abdel Basset Metwally Attia, "Discrete greedy flower pollination algorithm for spherical traveling salesman problem", Springer, 2019
More
Mohammed Abdel Basset Metwally Attia, "A New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems", Natural Sciences Publishing Cor., 2014
More
Mohammed Abdel Basset Metwally Attia, "A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems", Springer London, 2021
More
Mohammed Abdel Basset Metwally Attia, "An efficient binary slime mould algorithm integrated with a novel attacking-feeding strategy for feature selection", Pergamon, 2021
More
Mohammed Abdel Basset Metwally Attia, "An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: Analysis and validations", Pergamon, 2021
More
Department Related Publications
Ibrahiem Mahmoud Mohamed Elhenawy, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021
More
Ahmed Raafat Abass Mohamed Saliem, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021
More
Ahmed Raafat Abass Mohamed Saliem, "Using General Regression with Local Tuning for Learning Mixture Models from Incomplete Data Sets", ScienceDirect, 2010
More
Ahmed Raafat Abass Mohamed Saliem, "On determining efficient finite mixture models with compact and essential components for clustering data", ScienceDirect, 2013
More
Ahmed Raafat Abass Mohamed Saliem, "Unsupervised learning of mixture models based on swarm intelligence and neural networks with optimal completion using incomplete data", ScienceDirect, 2012
More
جامعة المنصورة
جامعة الاسكندرية
جامعة القاهرة
جامعة سوهاج
جامعة الفيوم
جامعة بنها
جامعة دمياط
جامعة بورسعيد
جامعة حلوان
جامعة السويس
شراقوة
جامعة المنيا
جامعة دمنهور
جامعة المنوفية
جامعة أسوان
جامعة جنوب الوادى
جامعة قناة السويس
جامعة عين شمس
جامعة أسيوط
جامعة كفر الشيخ
جامعة السادات
جامعة طنطا
جامعة بنى سويف