Dynamic analysis of porous functionally graded layered deep beams with viscoelastic core

Faculty Engineering Year: 2022
Type of Publication: ZU Hosted Pages: 79-90
Authors:
Journal: STEEL AND COMPOSITE STRUCTURES Techno Press Volume: 1
Keywords : Dynamic analysis , porous functionally graded layered    
Abstract:
In this study, the dynamic behavior of functionally graded layered deep beams with viscoelastic core is investigated including the porosity effect. The material properties of functionally graded layers are assumed to vary continuously through thickness direction according to the power-law function. To investigate porosity effect in functionally graded layers, three different distribution models are considered. The viscoelastically cored deep beam is exposed to harmonic sinusoidal load. The composite beam is modeled based on plane stress assumption. The dynamic equations of motion of the composite beam are derived based on the Hamilton principle. Within the framework of the finite element method (FEM), 2D twelve –node plane element is exploited to discretize the space domain. The discretized finite element model is solved using the Newmark average acceleration technique. The validity of the developed procedure is demonstrated by comparing the obtained results and good agreement is detected. Parametric studies are conducted to demonstrate the applicability of the developed methodology to study and analyze the dynamic response of viscoelastically cored porous functionally graded deep beams. Effects of viscoelastic parameter, porosity parameter, graduation index on the dynamic behavior of porous functionally graded deep beams with viscoelastic core are investigated and discussed. Material damping and porosity have a significant effect on the forced vibration response under harmonic excitation force. Increasing the material viscosity parameters results in decreasing the vibrational amplitudes and increasing the vibration time period due to increasing damping effect. Obtained results are supportive for the design and manufacturing of such type of composite beam structures.
   
     
 
       

Author Related Publications

  • Abdallah Mahmoud Bayoumi Kabel, "Net-tension strength of double-lap joints under bearing-bypass loading conditions using the cohesive zone model", Elsevier, 2015 More
  • Abdallah Mahmoud Bayoumi Kabel, "Optimum design of laminated composite plates under dynamic excitation", Elsevier, 2012 More
  • Abdallah Mahmoud Bayoumi Kabel, "Effect of loading and lamination parameters on the optimum design of laminated plates", Springer, 2011 More
  • Abdallah Mahmoud Bayoumi Kabel, "Net-tension strength of double lap joints taking into account the material cohesive law", ScienceDirect, 2014 More
  • Abdallah Mahmoud Bayoumi Kabel, "Nominal strength of quasi-brittle open hole specimens under biaxial loading conditions", SciVerse ScienceDirect, 2013 More

Department Related Publications

  • Adel Fathy Meselhy Ibrahiem, "Effect of some manufacturing parameters on mechanical properties of extruded Al-alumina composites", لايوجد, 1900 More
  • Ashraf Abdelfattah Ali Hassanein, "A novel 3-D graphite structure from thermally stabilized electrospun MWCNTs/PAN nanofibril composite fabrics", International Journal of Advanced Manufacturing Technology, 2014 More
  • Amal Elhosaieny Meselhy Alshorbagy, "Free vibration characteristics of a functionally graded beam by finite element method", www.elsevier.com/locate/apm, 2010 More
  • Mohammed Abdelmoniem Mohamed Eltaher , "Static and buckling analysis of functionally graded Timoshenko nanobeams", www.elsevier.com, 2014 More
  • Tamer Ali Abdella Sebaee, "AN EXPERIMENTAL STUDY ON THE BOLTED JOINT CONNECTIONS IN GFRE [0/90]2S LAMINATES", Minoufiya University, 2009 More
Tweet