FR-Tree: A novel rare association rule for big data problem

Faculty Computer Science Year: 2022
Type of Publication: ZU Hosted Pages: 115898 - 115898
Authors:
Journal: Expert Systems With Applications scinapse Volume: 187
Keywords : FR-Tree: , novel rare association rule , , data    
Abstract:
In some situations, finding the rare association rule is of higher importance than the frequent itemset. Unique rules represent rare cases, activities, or events in real-world applications. It is essential to extract exceptional critical ac
   
     
 
       

Author Related Publications

  • Ibrahiem Mahmoud Mohamed Elhenawy, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021 More
  • Ibrahiem Mahmoud Mohamed Elhenawy, "Determining Extractive Summary for a Single Document Based on Collaborative Filtering Frequency Prediction and Mean Shift Clustering", International Association of Engineers, 2019 More
  • Ibrahiem Mahmoud Mohamed Elhenawy, "A Review on the Applications of Neutrosophic Sets", Source: Journal of Computational and Theoretical Nanoscience, Volume 13, Number 1, January 2016, pp. 936-944(9), 2016 More
  • Ibrahiem Mahmoud Mohamed Elhenawy, "Feature and Intensity Based Medical Image Registration Using Particle Swarm Optimization", Springer, 2017 More
  • Ibrahiem Mahmoud Mohamed Elhenawy, "Solving 0–1 knapsack problem by binary flower pollination algorithm", Springer, 2018 More

Department Related Publications

  • Ibrahiem Mahmoud Mohamed Elhenawy, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021 More
  • Ahmed Raafat Abass Mohamed Saliem, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021 More
  • Ahmed Raafat Abass Mohamed Saliem, "Using General Regression with Local Tuning for Learning Mixture Models from Incomplete Data Sets", ScienceDirect, 2010 More
  • Ahmed Raafat Abass Mohamed Saliem, "On determining efficient finite mixture models with compact and essential components for clustering data", ScienceDirect, 2013 More
  • Ahmed Raafat Abass Mohamed Saliem, "Unsupervised learning of mixture models based on swarm intelligence and neural networks with optimal completion using incomplete data", ScienceDirect, 2012 More
Tweet