Robust Zero-Watermarking of Color Medical Images Using Multi-Channel Gaussian-Hermite Moments and 1D Chebyshev Chaotic Map

Faculty Computer Science Year: 2022
Type of Publication: ZU Hosted Pages:
Authors:
Journal: sensors MDPI Volume:
Keywords : Robust Zero-Watermarking , Color Medical Images Using    
Abstract:
Copyright protection of medical images is a vital goal in the era of smart healthcare systems. In recent telemedicine applications, medical images are sensed using medical imaging devices and transmitted to remote places for screening by physicians and specialists. During their transmission, the medical images could be tampered with by intruders. Traditional watermarking methods embed the information in the host images to protect the copyright of medical images. The embedding destroys the original image and cannot be applied efficiently to images used in medicine that require high integrity. Robust zero-watermarking methods are preferable over other watermarking algorithms in medical image security due to their outstanding performance. Most existing methods are presented based on moments and moment invariants, which have become a prominent method for zero-watermarking due to their favorable image description capabilities and geometric invariance. Although moment-based zero-watermarking can be an effective approach to image copyright protection, several present approaches cannot effectively resist geometric attacks, and others have a low resistance to large-scale attacks. Besides these issues, most of these algorithms rely on traditional moment computation, which suffers from numerical error accumulation, leading to numerical instabilities, and time consumption and affecting the performance of these moment-based zero-watermarking techniques. In this paper, we derived multi-channel Gaussian–Hermite moments of fractional-order (MFrGHMs) to solve the problems. Then we used a kernel-based method for the highly accurate computation of MFrGHMs to solve the computation issue. Then, we constructed image features that are accurate and robust. Finally, we presented a new zero-watermarking scheme for color medical images using accurate MFrGHMs and 1D Chebyshev chaotic features to achieve lossless copyright protection of the color medical images. We performed experiments where their outcomes ensure the robustness of the proposed zero-watermarking algorithms against various attacks. The proposed zero-watermarking algorithm achieves a good balance between robustness and imperceptibility. Compared with similar existing algorithms, the proposed algorithm has superior robustness, security, and time computation.
   
     
 
       

Author Related Publications

  • Khalied Mohamed Hosny, "SEMANTIC REPRESENTATION OF MUSIC DATABASE USING NEW ONTOLOGY-BASED SYSTEM", Journal of Theoretical and Applied Information Technology, 2020 More
  • Khalied Mohamed Hosny, "Building a New Semantic Social Network Using Semantic Web-Based Techniques", ِASPG, 2021 More
  • Khalied Mohamed Hosny, "New Graphical Ultimate Processor for Mapping Relational Database to Resource Description Framework", IEEE, 2022 More
  • Khalied Mohamed Hosny, "Fast computation of accurate Zernike moments", Springer, 2008 More
  • Khalied Mohamed Hosny, "Accurate Computation of QPCET for Color Images in Different Coordinate Systems", SPIE, 2017 More

Department Related Publications

  • Walid Ibrahim Ibrahim Khedr, "Ad-hoc on Demand Authentication Chain Protocol - An Authentication Protocol for Ad-Hoc Networks", Institute for Systems and Technologies of Information, Control and Communication, 2015 More
  • Khalied Mohamed Hosny, "Robust Color Image Hashing Using Quaternion Polar Complex Exponential Transform for Image Authentication", Springer, 2018 More
  • Asmaa Mohamed Khalid Mohamed Abbas, "Efficient compression of volumetric medical images using Legendre moments and differential evolution", Springer, 2020 More
  • Khalied Mohamed Hosny, "Efficient compression of volumetric medical images using Legendre moments and differential evolution", Springer, 2020 More
  • Ehab Roshdy Mohamed, "Efficient compression of volumetric medical images using Legendre moments and differential evolution", Springer, 2020 More
Tweet