Investigation of Alogliptin-Loaded In Situ Gel Implants by 23 Factorial Design with Glycemic Assessment in Rats

Faculty Pharmacy Year: 2022
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Pharmaceutics MDPI Volume:
Keywords : Investigation , Alogliptin-Loaded , Situ , Implants , , Factorial Design    
Abstract:
The aim of the study was to design injectable long-acting poly (lactide-co-glycolide) (PLGA)-based in situ gel implants (ISGI) loaded with the anti-diabetic alogliptin. Providing sustained therapeutic exposures and improving the pharmacological responses of alogliptin were targeted for achieving reduced dosing frequency and enhanced treatment outputs. In the preliminary study, physicochemical characteristics of different solvents utilized in ISGI preparation were studied to select a proper solvent possessing satisfactory solubilization capacity, viscosity, water miscibility, and affinity to PLGA. Further, an optimization technique using a 23 factorial design was followed. The blood glucose levels of diabetic rats after a single injection with the optimized formulation were compared with those who received daily oral alogliptin. N-methyl-2-pyrrolidone (NMP) and dimethyl sulfoxide (DMSO), as highly water-miscible and low viscous solvents, demonstrated their effectiveness in successful ISGI preparation and controlling the burst alogliptin release. The impact of increasing lactide concentration and PLGA amount on reducing the burst and cumulative alogliptin release was represented. The optimized formulation comprising 312.5 mg of PLGA (65:35) and DMSO manifested a remarkable decrease in the rats’ blood glucose levels throughout the study period in comparison to that of oral alogliptin solution. Meanwhile, long-acting alogliptin-loaded ISGI systems demonstrated their feasibility for treating type 2 diabetes with frequent dosage reduction and patient compliance enhancement.
   
     
 
       

Author Related Publications

    Department Related Publications

    • Amr Selim Ahmed Ali Abu Lila, "A Novel Strategy to Increase the Yield of Exosomes (Extracellular Vesicles) for an Expansion of Basic Research", J-stage, 2018 More
    • Sherif Emam Abdallah Emam, "A Novel Strategy to Increase the Yield of Exosomes (Extracellular Vesicles) for an Expansion of Basic Research", J-stage, 2018 More
    • Mahmoud Abdalghany Mahmoud Mahdy, "A Novel Strategy to Increase the Yield of Exosomes (Extracellular Vesicles) for an Expansion of Basic Research", J-stage, 2018 More
    • Fakhreldeen Soliman Ghazy Shehata, "A Novel Strategy to Increase the Yield of Exosomes (Extracellular Vesicles) for an Expansion of Basic Research", J-stage, 2018 More
    • Abdelwahab Ali Hassan Ali Khidr, "Formulation, In Vitro Optimization and In Vivo Evaluation of Sustained Release Transdermal Patches of Venlafaxine Hydrochloride", Latin American Journal of Pharmacy, 2017 More
    Tweet