Modelling and mapping soil nutrient depletion in humid highlands of East Africa using ensemble machine learning: A case study from Rwanda

Faculty Agriculture Year: 2022
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Catena Elsevier Volume:
Keywords : Modelling , mapping soil nutrient depletion , humid    
Abstract:
Soil nutrient depletion is one of the major causes of high yield gaps and nutrient defciencies in East Africa highlands, including Rwanda. This research sought to determine the current soil nutrient balance and its spatial variation in 10 Rwandan agro-ecological zones. Soil nitrogen (N), phosphorus (P) and potassium (K) depletion in croplands were calculated using data from 455 feld trials of the Optimizing Fertilizer Recommendations in Africa (OFRA) project in Rwanda. Calculated soil nutrient balances (NPK) and 15 environmental covariates were used to calibrate soil nutrient depletion models using ensemble machine learning (EML) and 10-fold crossvalidation. In the 2019–2020 growing season, annual N and K depletions were 33.6 kg N ha− 1 yr− 1 and 71.0 kg K ha− 1 yr− 1, with a positive P balance of 2.30 kg P ha− 1 yr− 1. High soil nutrient uptake and high soil nutrient loss due to erosion and leaching were two main causes of NPK depletion. Spatial variations of NPK balance were influenced by soil nutrient stocks, soil erosion, elevation, rainfall, soil texture, and soil bulk density. The 10-fold cross-validation showed that coeffcients of determination (R2) of NPK models were 62%, 58%, and 58%, respectively. Compared to single models, ensemble machine learning improved NPK model accuracy up to 5%. Our research revealed that soil nutrient depletion was highest in the northwest and lowest in the southeast of the study area. We conclude that increasing soil nutrient inputs without reducing soil nutrient loss due to soil degradation will not decrease soil nutrient depletion in Rwanda and ensemble machine learning outperforms single models in predicting soil nutrient balance. The solution to reduce high soil nutrient depletion in all agroecological zones of Rwanda would be to prioritize soil and water conservation measures and increase soil nutrient inputs.
   
     
 
       

Author Related Publications

  • Ahmed Salah Abdelkarim ebrahim, "Changes in phosphorus fractions in response to long-term nitrogen fertilization in loess plateau of China", ُELSEVIR, 2021 More
  • Ahmed Salah Abdelkarim ebrahim, "Global gross nitrification rates are dominantly driven by soil carbon-to-nitrogen stoichiometry and total nitrogen", Wiley, 2021 More
  • Ahmed Salah Abdelkarim ebrahim, "Genome-Wide Identification and Expression Analysis of Metal Tolerance Protein Gene Family in Medicago truncatula Under a Broad Range of Heavy Metal Stress", Frontiers, 2021 More
  • Ahmed Salah Abdelkarim ebrahim, "Interplaying roles of silicon and proline effectively improve salt and cadmium stress tolerance in Phaseolus vulgaris plant", ELSEVIER, 2019 More
  • Ahmed Salah Abdelkarim ebrahim, "Role of Nanoparticles in Enhancing Crop Tolerance to Abiotic Stress: A Comprehensive Review", Frontiers, 2022 More

Department Related Publications

  • Mohammed Mahmoud Nabil, "ОСОБЕННОСТИ ИЗМЕНЕНИЯ АЛЛЮВИАЛЬНЫХ ПОЧВ ВОСТОЧНОЙ ЧАСТИ ДЕЛЬТЫ НИЛА ПРИ АНТРОПОГЕННЫХ ВОЗДЕЙСТВИЯХ", Российского университета дружбы народов, 2013 More
  • Mohammed Mahmoud Nabil, "Quantitative Assessment of Desertification in Bahariya Oasis Environment, Western Desert, Egypt.", .Zagazig uni, 2018 More
  • Mohammed Mahmoud Nabil, "Effect of Mineral Fertilizers and Biofertilization on some Soil Properties and Faba Bean Productivity under Saline Soil Conditions.", Mansoura University, 2019 More
  • Mohammed Mahmoud Nabil, "Estimation of surface runoff using NRCS curve number in some areas in northwest coast, Egypt.", E3S Web of Conferences,, 2020 More
  • Mohammed Mahmoud Nabil, "Soil Water Erosion Vulnerability and Suitability under Different Irrigation Systems Using Parametric Approach and GIS, Ismailia, Egypt.", Sustainability ., 2021 More
Tweet