Genotoxicity assessment of amino zinc nanoparticles in wheat (Triticum aestivum L.) as cytogenetical persp

Faculty Agriculture Year: 2021
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Saudi Journal of Biological Sciences Elsevier Volume:
Keywords : Genotoxicity assessment , amino zinc nanoparticles , wheat (Triticum    
Abstract:
Nanoparticles have a positive impact in several subjects especially in agriculture, while their safety is still being debated. Numerous commercial nano pesticide, insecticides, and fertilizers products are found in the local markets without any intensely studies on the side effect of these products on plant, human as well as environmental effects. The present study aimed to evaluate the genotoxicity of commercial amino zinc nanoparticles (AZ NPs) on Triticum aestivum L. during seeds germination and root elongation using concentration ranges (50, 100, and 150 ppm) at different exposure times (8, 16 and 24 hrs). Long term exposure to AZ NPs, exhibited only slight variation in germination rates and the elongation of roots was affected by AZ NPs treatment ranged from 97.66 to 100%. Significant reduction in the mitotic index was 35.33% after 24 hrs and 150 ppm of AZ NPs, was also observed comparing with control which was 88.0%. Genotoxicity was evaluated at a cytological level in root meristems that revealed sever variations in mitotic activity, chromosomal aberrations, and micronuclei release. Results exhibited that nano amino zinc could enter effortlessly into the cells and inhibit the normal cellular function. The decrease in the emergence of chromosomal aberrations resulting from AZ NPs exposure in a dose-dependent manner was clearly indicated that AZ NPs has induced genotoxic effect on wheat root tips
   
     
 
       

Author Related Publications

  • Elsayed Mohamed Desoky, "Enhancement of drought tolerance in diverse Vicia faba cultivars by inoculation with plant growth-promoting rhizobacteria under newly reclaimed soil conditions", Nature, 2021 More
  • Elsayed Mohamed Desoky, "Humus materials and Moringa (Moringa oleifera Lam.) Leaf Extract Modulate the Harmful Effect of Soil Salinity Stress in Sudan Grass (Sorghum vulgare L.)", National Information and Documentation Center (NIDOC), 2019 More
  • Elsayed Mohamed Desoky, "Maize (Zea mays L.) grains extract mitigates the deleterious effects of salt stress on common bean (Phaseolus vulgaris L.) growth and physiology", Taylor& Francis, 2019 More
  • Elsayed Mohamed Desoky, "Interplaying roles of silicon and proline effectively improve salt and cadmium stress tolerance in Phaseolus vulgaris plant", ELSEVIER, 2019 More
  • Elsayed Mohamed Desoky, "Role of Nanoparticles in Enhancing Crop Tolerance to Abiotic Stress: A Comprehensive Review", Frontiers, 2022 More

Department Related Publications

  • Fathi Mohamed Abdou Elsadony, "Nitrogen-molybdenum-manganese co-fertilization reduces nitrate accumulation and enhances spinach (Spinacia oleracea L.) yield and its quality", Saudi Journal of Biological Sciences, 2022 More
  • Fathi Mohamed Abdou Elsadony, "Improving growth and productivity of faba bean (Vicia faba L.) using chitosan, tryptophan, and potassium silicate anti-transpirants under different irrigation regimes", Saudi Journal of Biological Sciences, 2022 More
  • Fathi Mohamed Abdou Elsadony, "Improvement of Selected Morphological, Physiological, and Biochemical Parameters of Roselle (Hibiscus sabdariffa L.) Grown Under Different Salinity Levels Using Potassium Silicate and Aloe saponaria Extract", plants, 2022 More
  • Fathi Mohamed Abdou Elsadony, "Foliar spray of potassium silicate, aloe extract composite and their effect on growth and yielding capacity of Roselle (Hibiscus sabdariffa L.) under water deficit stress conditions", Saudi Journal of Biological Sciences, 2022 More
  • Fathi Mohamed Abdou Elsadony, "Impact of Green Chitosan Nanoparticles Fabricated from Shrimp Processing Waste as a Source of Nano Nitrogen Fertilizers on the Yield Quantity and Quality of Wheat (Triticum aestivum L.) Cultivars.", Molecules, 2022 More
Tweet