Prediction of irrigation water quality indices based on machine learning and regression models

Faculty Agriculture Year: 2022
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Applied Water Science Springer Volume:
Keywords : Prediction , irrigation water quality indices based    
Abstract:
Assessing irrigation water quality is one of the most critical challenges in improving water resource management strategies. The objective of this work was to predict the irrigation water quality index of the Bahr El-Baqr, Egypt, based on nonexpensive approaches that requires simple parameters. To achieve this goal, three artifcial intelligence (AI) models (Support vector machine, SVM; extreme gradient boosting, XGB; Random Forest, RF) and four multiple regression models (Stepwise Regression, SW; Principal Components Regression, PCR; Partial least squares regression, PLS; Ordinary least squares regression, OLS) were applied and validated for predicting six irrigation water quality criteria (soluble sodium percentage, SSP; sodium adsorption ratio, SAR; residual sodium carbonate, RSC; potential of salinity, PS; permeability index, PI; Kelly’s ratio, KR). Electrical conductivity (EC), sodium (Na+), calcium (Ca2+) and bicarbonate (HCO3−) were used as input exploratory variables for the models. The results indicated the water source is not suitable for irrigation without treatment. A good soil drainage system and salinity control measures are required to avoid salt accumulation within the soil. Based on the performance statistics of the root mean square error (RMSE) and the scatter index (SI), SW emerged as the best (0.21% and 0.03%) followed by PCR and PLS with RMSE 0.22% and 0.21% for SAR, respectively. Based on the classifcation of the SI, all models applied having values less than 0.1 indicate good prediction performance for all the indices except RSC. These results highlight potential of using multiple regressions and the developed machine learning methods in predicting the index of irrigation water quality, and can be rapid decision tools for modelling irrigation water quality.
   
     
 
       

Author Related Publications

  • Mohamed Kamal Abdelfatah Mohamed, "تأثير مصدر الكالسيوم على تعديل خواص الأراضي الملحية الصودية", Egypt. J. Soil Sci., 2014 More
  • Mohamed Kamal Abdelfatah Mohamed, "تقييم نوعية المياه العادمة لمصارف بحر البقر، القليوبية وبلبيس في شرق الدلتا - مصر لإستخدامها في أغراض الري", Cairo, A.R.E. : National Information and Documentation Centre, 2016 More
  • Mohamed Kamal Abdelfatah Mohamed, "تأثير المصادر المختلفة للأسمدة النيتروجينية المخلوطة مع الفيرميكوليت على إنتاجية القمح وتيسر النيتروجين في أرض رملية في مصر", Academic Journals Inc., 2013 More
  • Mohamed Kamal Abdelfatah Mohamed, "Improving productivity and nutrient uptake of wheat plants using Moringa Oleifera leaf extract in sandy soil", Taylor & Francis Group, 2017 More
  • Mohamed Kamal Abdelfatah Mohamed, "تأثير أحجام حبيبات الجبس على استصلاح الأراضي الملحية الصودية في مصر", Taylor & Francis Group, LLC, 2014 More

Department Related Publications

  • Mohammed Mahmoud Nabil, "ОСОБЕННОСТИ ИЗМЕНЕНИЯ АЛЛЮВИАЛЬНЫХ ПОЧВ ВОСТОЧНОЙ ЧАСТИ ДЕЛЬТЫ НИЛА ПРИ АНТРОПОГЕННЫХ ВОЗДЕЙСТВИЯХ", Российского университета дружбы народов, 2013 More
  • Mohammed Mahmoud Nabil, "Quantitative Assessment of Desertification in Bahariya Oasis Environment, Western Desert, Egypt.", .Zagazig uni, 2018 More
  • Mohammed Mahmoud Nabil, "Effect of Mineral Fertilizers and Biofertilization on some Soil Properties and Faba Bean Productivity under Saline Soil Conditions.", Mansoura University, 2019 More
  • Mohammed Mahmoud Nabil, "Estimation of surface runoff using NRCS curve number in some areas in northwest coast, Egypt.", E3S Web of Conferences,, 2020 More
  • Mohammed Mahmoud Nabil, "Soil Water Erosion Vulnerability and Suitability under Different Irrigation Systems Using Parametric Approach and GIS, Ismailia, Egypt.", Sustainability ., 2021 More
Tweet