Mechanical properties and durability assessment of nylon fiber reinforced self-compacting concrete

Faculty Engineering Year: 2021
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Journal of Engineered Fibers and Fabrics sage Volume:
Keywords : Mechanical properties , durability assessment , nylon fiber reinforced self-compacting    
Abstract:
The higher paste volume in Self Compacting Concrete (SCC) makes it susceptible to have a higher creep coefficient and cracking and has brittle nature. This brittle nature of concrete is unacceptable for any construction industry. The addition of fibers is one of the most prevalent methods to enhance the ductile and tensile behavior of concrete. Fibers reduce the cracking phenomena and improve the energy absorption capacity of the structure. Conversely, the addition of fibers has a negative impact on the workability of fresh concrete. In this research work, a detailed investigation of the influence of Nylon fibers (NFs) on fresh properties, durability, and mechanical properties of SCC was carried out. NFs were added into concrete mixes in a proportion of 0.5%, 1%, 1.5%, and 2% by weight of cement to achieve the research objectives. Durability assessment of modified SCC having Nylon fibers was performed using water absorption, permeability, carbonation resistance, and acid attack resistant. Mechanical tests (compressive and tensile) were conducted for modified as well as control mix. Test results indicate that the passing and filling ability decreased while segregation and bleeding resistance increased with NFs. Furthermore, test results showed a significant increase in strength up to 1.5% addition of nylon fibers and then strength decreases gradually. Durability parameters were significantly improved with the incorporation of NFs relative to the control mix. Overall, this study demonstrated the potential of using nylon fibers in self-compacting concrete with improved durability and mechanical properties.
   
     
 
       

Author Related Publications

  • Ibrahim Attia Abdelmegeed Abdelgawad, "Flexural response and load capacity of reinforced concrete beams strengthened with reinforced mortar layer", Elsevier, 2021 More
  • Ibrahim Attia Abdelmegeed Abdelgawad, "Experimental and theoretical study on the compressive strength of the high strength concrete incorporating steel fiber and metakaolin", Elsevier, 2021 More
  • Ibrahim Attia Abdelmegeed Abdelgawad, "Experimental study of the influence of adhesive properties and bond length on the bond behaviour of NSM FRP bars in concrete", Taylor and Francis, 2016 More
  • Ibrahim Attia Abdelmegeed Abdelgawad, "Experimental and analytical investigation into the flexural performance of RC beams with partially and fully bonded NSM FRP bars/strips", Composite Structures, 2015 More
  • Ibrahim Attia Abdelmegeed Abdelgawad, "Flexural behavior of RC beams strengthened by NSM GFRP Bars having different end conditions", Elsevier, 2016 More

Department Related Publications

  • Ahmed Mohamed Hassan Ali Youssief, "Densification behavior and mechanical properties of niobium-oxide-doped alumina ceramics", Goller Verlag, 2013 More
  • Ahmed Mohamed Hassan Ali Youssief, "Influence of Ta2o5 DOPING ON THE MICROSTRUCTURE, physical and mechanical properties of 2-alumina ceramics", Goller Verlag, 2013 More
  • Amro Shehata Mohamed Shehata Fayed, "Morphological, mechanical, and thermal characterization of electrospun three‐dimensional graphite nanoplatelets/polystyrene ultra‐fine fibril composite fabrics", wileyonlinelibrary.com/journal/pc, 2021 More
Tweet