An Improved Binary Grey-Wolf Optimizer with Simulated Annealing for Feature Selection

Faculty Computer Science Year: 2021
Type of Publication: ZU Hosted Pages:
Authors:
Journal: IEEE Access IEEE Access Volume:
Keywords : , Improved Binary Grey-Wolf Optimizer with Simulated    
Abstract:
This paper proposes improvements to the binary grey-wolf optimizer (BGWO) to solve the feature selection (FS) problem associated with high data dimensionality, irrelevant, noisy, and redundant data that will then allow machine learning algorithms to attain better classification/clustering accuracy in less training time. We propose three variants of BGWO in addition to the standard variant, applying different transfer functions to tackle the FS problem. Because BGWO generates continuous values and FS needs discrete values, a number of V-shaped, S-shaped, and U-shaped transfer functions were investigated for incorporation with BGWO to convert their continuous values to binary. After investigation, we note that the performance of BGWO is affected by the selection of the transfer function. Then, in the first variant, we look to reduce the local minima problem by integrating an exploration capability to update the position of the grey wolf randomly within the search space with a certain probability; this variant was abbreviated as IBGWO. Consequently, a novel mutation strategy is proposed to select a number of the worst grey wolves in the population which are updated toward the best solution and randomly within the search space based on a certain probability to determine if the update is either toward the best or randomly. The number of the worst grey wolf selected by this strategy is linearly increased with the iteration. Finally, this strategy is combined with IBGWO to produce the second variant of BGWO that was abbreviated as LIBGWO. In the last variant, simulated annealing (SA) was integrated with LIBGWO to search around the best-so-far solution at the end of each iteration in order to identify better solutions. The performance of the proposed variants was validated on 32 datasets taken from the UCI repository and compared with six wrapper feature selection methods. The experiments show the superiority of the proposed improved variants in producing better classification accuracy than the other selected wrapper feature selection algorithms
   
     
 
       

Author Related Publications

  • Osama Mohamed Abdelsalam Ahmed Elkomy, "MT-nCov-Net: A Multitask Deep-Learning Framework for Efficient Diagnosis of COVID-19 Using Tomography Scans", IEEE, 2021 More
  • Osama Mohamed Abdelsalam Ahmed Elkomy, "Two-Stage Deep Learning Framework for Discrimination between COVID-19 and Community-Acquired Pneumonia from Chest CT scans.", ELSEVIER, 2021 More
  • Osama Mohamed Abdelsalam Ahmed Elkomy, "Efficient model for emergency departments: Real case study", Computers, Materials and ContinuaComputers, Materials and Continua, 2022 More
  • Osama Mohamed Abdelsalam Ahmed Elkomy, "Recognition of phonetic Arabic figures via wavelet based Mel Frequency Cepstrum using HMMs", HBRC Journal, 2014 More
  • Osama Mohamed Abdelsalam Ahmed Elkomy, "Multi-Objective Task Scheduling Approach for Fog Computing.", IEEE Access, 2021 More

Department Related Publications

  • Walid Ibrahim Ibrahim Khedr, "Ad-hoc on Demand Authentication Chain Protocol - An Authentication Protocol for Ad-Hoc Networks", Institute for Systems and Technologies of Information, Control and Communication, 2015 More
  • Khalied Mohamed Hosny, "Robust Color Image Hashing Using Quaternion Polar Complex Exponential Transform for Image Authentication", Springer, 2018 More
  • Khalied Mohamed Hosny, "Efficient compression of volumetric medical images using Legendre moments and differential evolution", Springer, 2020 More
  • Ehab Roshdy Mohamed, "Efficient compression of volumetric medical images using Legendre moments and differential evolution", Springer, 2020 More
  • Asmaa Mohamed Khalid Mohamed Abbas, "Efficient compression of volumetric medical images using Legendre moments and differential evolution", Springer, 2020 More
Tweet