PV-Net: An innovative deep learning approach for efficient forecasting of short-term photovoltaic energy production

Faculty Computer Science Year: 2021
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Journal of Cleaner Production ElSEVIER Volume:
Keywords : PV-Net: , innovative deep learning approach , efficient    
Abstract:
Although photovoltaic (PV) energy production offers several environmental and commercial advantages, the irregular nature of PV energy can challenge the design and development of the energy management systems. Precise forecasting for PV energy production is therefore of vital importance to supply consumers to improve trust in functionality of the energy management system. Stimulated by current developments in deep learning (DL) techniques as well as the promising efficiency in energy-related applications, this study introduces a novel DL architecture, called PV-Net, for short-term forecasting of day-ahead PV energy. In PV-Net, the gates of the gated recurrent unit (GRU) are redesigned using convolutional layers (called Conv-GRU) to enable efficient extraction of positional and temporal characteristics in the PV power sequences. The Conv-GRU cells are stacked in bidirectional (Bi-dir) blocks to enable modeling temporal information in forward and backward directions. The Bi-dir block is residually connected to avoid information loss across layers and to facilitate gradient flow during training. A real-world case study from Alice Springs, Australia, is employed to evaluate and compare the performance of the proposed PV-Net against recent cutting-edge approaches. The values of four performance measures demonstrate the efficiency of the proposed PV-Net in terms of prediction precision and consistency.
   
     
 
       

Author Related Publications

  • Hosam Rada mohamed abdel megeed hawash, "RCTE: A reliable and consistent temporal-ensembling framework for semi-supervised segmentation of COVID-19 lesions", ElSEVIER, 2021 More
  • Hosam Rada mohamed abdel megeed hawash, "Two-Stage Deep Learning Framework for Discrimination between COVID-19 and Community-Acquired Pneumonia from Chest CT scans", ElSEVIER, 2021 More
  • Hosam Rada mohamed abdel megeed hawash, "Deep learning approaches for human centered IoT applications in smart indoor environments: a contemporary survey", Springer, 2021 More
  • Hosam Rada mohamed abdel megeed hawash, "ST-DeepHAR: Deep Learning Model for Human Activity Recognition in IoHT Applications", IEEE, 2020 More
  • Hosam Rada mohamed abdel megeed hawash, "Energy-Net: A Deep Learning Approach for Smart Energy Management in IoT-Based Smart Cities", IEEE, 2021 More

Department Related Publications

  • Ahmed Raafat Abass Mohamed Saliem, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021 More
  • Ibrahiem Mahmoud Mohamed Elhenawy, "BERT-CNN: A Deep Learning Model for Detecting Emotions from Text", Tech Science Press, 2021 More
  • Ahmed Raafat Abass Mohamed Saliem, "Using General Regression with Local Tuning for Learning Mixture Models from Incomplete Data Sets", ScienceDirect, 2010 More
  • Ahmed Raafat Abass Mohamed Saliem, "On determining efficient finite mixture models with compact and essential components for clustering data", ScienceDirect, 2013 More
  • Ahmed Raafat Abass Mohamed Saliem, "Unsupervised learning of mixture models based on swarm intelligence and neural networks with optimal completion using incomplete data", ScienceDirect, 2012 More
Tweet