Best-KFF: a multi-objective preemptive resource allocation policy for cloud computing systems

Faculty Computer Science Year: 2021
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Cluster Computing springer Volume:
Keywords : Best-KFF: , multi-objective preemptive resource allocation policy    
Abstract:
Resource provisioning is a key issue in large-scale distributed systems such as cloud computing systems. Several resource provider systems utilized preemptive resource allocation techniques to maintain a high quality of service level. When there is a lack of resources for high-priority requests, leases/jobs with higher priority can run by suspending or canceling leases/jobs with lower priority to release the required resources. The state-of-the-art preemptive resource allocation methods are classified into two classes, namely, (1) heuristic and (2) brute force. The heuristic-based methods are fast, but they can’t maintain the system performance, while brute force-based methods are vice versa. In this work, we proposed a new multi-objective preemptive resource allocation policy that benefits from these two classes. We proposed a new heuristic called Best K-First-Fit (Best-KFF). The Best-KFF searches for the first k preemption choices at each physical machine (PM) and then sorts these preemption choices obtained from the PMs with respect to several objectives (e.g., resource utilization). Then, the Best-KFF selects the best choice maintaining the cloud computing system performance. Thus, the Best-KFF algorithm is a compromise between the heuristic and brute force classes. The higher the value of k is, the larger the search space is. The Best-KFF method maximizes the resource utilization of the physical machines and minimizes the average waiting time of advanced-reservation requests, the number of lease preemption, the preemption time, and energy consumption. The proposed method was thoroughly examined and compared against the state-of-the-art methods. The experimental results on various cloud computing systems demonstrated that the proposed preemption policy outperforms the state-of-the-art methods.
   
     
 
       

Author Related Publications

  • Ahmed Salah Mohamed Mostafa, "Artificial Intelligence and Machine Learning-Driven Decision-Making", Hindawi, 2021 More
  • Ahmed Salah Mohamed Mostafa, "Usages of Spark Framework with Different Machine Learning Algorithms", Hindawi, 2021 More
  • Ahmed Salah Mohamed Mostafa, "Efficient index-independent approaches for the collective spatial keyword queries", elsevier, 2021 More
  • Ahmed Salah Mohamed Mostafa, "A robust UWSN handover prediction system using ensemble learning", MDPI, 2021 More
  • Ahmed Salah Mohamed Mostafa, "Price Prediction of Seasonal Items Using Machine Learning and Statistical Methods", Tech Science Press, 2021 More

Department Related Publications

  • Ahmed Salah Mohamed Mostafa, "Lazy-Merge: A Novel Implementation for Indexed Parallel K-Way In-Place Merging", IEEE, 2016 More
  • Ibrahiem Mahmoud Mohamed Elhenawy, "A Review on the Applications of Neutrosophic Sets", Source: Journal of Computational and Theoretical Nanoscience, Volume 13, Number 1, January 2016, pp. 936-944(9), 2016 More
  • Mohammed Abdel Basset Metwally Attia, "A Review on the Applications of Neutrosophic Sets", Source: Journal of Computational and Theoretical Nanoscience, Volume 13, Number 1, January 2016, pp. 936-944(9), 2016 More
  • Mohammed Abdel Basset Metwally Attia, "A Review on the Applications of Neutrosophic Sets", Source: Journal of Computational and Theoretical Nanoscience, Volume 13, Number 1, January 2016, pp. 936-944(9), 2016 More
  • Mohammed Abdel Basset Metwally Attia, "A comparative study of cuckoo search and flower pollination algorithm on solving global optimization problems", emerald insight, 2017 More
Tweet