A robust UWSN handover prediction system using ensemble learning

Faculty Computer Science Year: 2021
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Sensors- MDPI MDPI Volume:
Keywords : , robust UWSN handover prediction system using    
Abstract:
The use of underwater wireless sensor networks (UWSNs) for collaborative monitoring and marine data collection tasks is rapidly increasing. One of the major challenges associated with building these networks is handover prediction; this is because the mobility model of the sensor nodes is different from that of ground-based wireless sensor network (WSN) devices. Therefore, handover prediction is the focus of the present work. There have been limited efforts in addressing the handover prediction problem in UWSNs and in the use of ensemble learning in handover prediction for UWSNs. Hence, we propose the simulation of the sensor node mobility using real marine data collected by the Korea Hydrographic and Oceanographic Agency. These data include the water current speed and direction between data. The proposed simulation consists of a large number of sensor nodes and base stations in a UWSN. Next, we collected the handover events from the simulation, which were utilized as a dataset for the handover prediction task. Finally, we utilized four machine learning prediction algorithms (i.e., gradient boosting, decision tree (DT), Gaussian naive Bayes (GNB), and K-nearest neighbor (KNN)) to predict handover events based on historically collected handover events. The obtained prediction accuracy rates were above 95%. The best prediction accuracy rate achieved by the state-of-the-art method was 56% for any UWSN. Moreover, when the proposed models were evaluated on performance metrics, the measured evolution scores emphasized the high quality of the proposed prediction models. While the ensemble learning model outperformed the GNB and KNN models, the performance of ensemble learning and decision tree models was almost identical.
   
     
 
       

Author Related Publications

  • Ahmed Salah Mohamed Mostafa, "Artificial Intelligence and Machine Learning-Driven Decision-Making", Hindawi, 2021 More
  • Ahmed Salah Mohamed Mostafa, "Usages of Spark Framework with Different Machine Learning Algorithms", Hindawi, 2021 More
  • Ahmed Salah Mohamed Mostafa, "Efficient index-independent approaches for the collective spatial keyword queries", elsevier, 2021 More
  • Ahmed Salah Mohamed Mostafa, "Price Prediction of Seasonal Items Using Machine Learning and Statistical Methods", Tech Science Press, 2021 More
  • Ahmed Salah Mohamed Mostafa, "Lazy-Merge: A Novel Implementation for Indexed Parallel K-Way In-Place Merging", IEEE, 2016 More

Department Related Publications

  • Ahmed Salah Mohamed Mostafa, "Lazy-Merge: A Novel Implementation for Indexed Parallel K-Way In-Place Merging", IEEE, 2016 More
  • Ibrahiem Mahmoud Mohamed Elhenawy, "A Review on the Applications of Neutrosophic Sets", Source: Journal of Computational and Theoretical Nanoscience, Volume 13, Number 1, January 2016, pp. 936-944(9), 2016 More
  • Doaa El-Shahat Barakat Mohammed, "A modified nature inspired meta-heuristic whale optimization algorithm for solving 0–1 knapsack problem", Springer Berlin Heidelberg, 2017 More
  • Ibrahiem Mahmoud Mohamed Elhenawy, "A novel whale optimization algorithm for cryptanalysis in Merkle-Hellman cryptosystem", Springer US, 2018 More
  • Abdallah Gamal abdallah mahmoud, "A Bipolar Neutrosophic Multi Criteria Decision Making Framework for Professional Selection", MDPI, 2020 More
Tweet