Zagazig University Digital Repository
Home
Thesis & Publications
All Contents
Publications
Thesis
Graduation Projects
Research Area
Research Area Reports
Search by Research Area
Universities Thesis
ACADEMIC Links
ACADEMIC RESEARCH
Zagazig University Authors
Africa Research Statistics
Google Scholar
Research Gate
Researcher ID
CrossRef
An improved gaining-sharing knowledge algorithm for parameter extraction of photovoltaic models
Faculty
Computer Science
Year:
2021
Type of Publication:
ZU Hosted
Pages:
Authors:
Karam mohamed goda
Staff Zu Site
Abstract In Staff Site
Journal:
Energy Conversion and Management Elsevier
Volume:
Keywords :
, improved gaining-sharing knowledge algorithm , parameter extraction
Abstract:
The optimal operation of solar cells depends on the accurate determination of parameters in the Photovoltaic (PV) models, such as resistance and currents, which may vary due to unstable weathers conditions and equipment aging. The precise selection of these parameters resembles a multi-variable, nonlinear and multi-modal problem. Despite a few parameter extraction techniques being available to solve such a problem, more-accurate and advanced solutions still present a challenging research question. This paper therefore proposes an improved gaining-sharing knowledge (IGSK) algorithm to accurately and precisely extract the parameters of PV models. The improvement in the classical GSK algorithm is incorporated by introducing an adaptive mechanism to automatically adjust the value of the knowledge rate parameter. This adaptive mechanism ensures the balance between the number of dimensions updated by the junior gaining-sharing phase and the number of dimensions updated by the senior gaining-sharing phase. A bound-constraint handling method is also presented and a linear population size reduction technique is used to boost the speed of convergence and to maintain a tared-off between the exploration and exploitation properties. The efficacy of the proposed IGSK has been demonstrated by considering three different PV modules models, i.e., single diode, double diode, and PV modules and two other commercial ones (Thin Film ST40 and Mono-crystalline SM55). For those modules, the proposed IGSK receptively produces the following outcomes: 0.00098602188, 0.0009827277, 0.0024250749, 0.0017298137, and 0.016600603. The statistical obtained results demonstrate that the IGSK indicates competitive or even better performance on convergence speed, accuracy and reliability compared with other competing techniques. Therefore, the proposed approach is believed to be an effective and efficient alternative for parameter extraction of PV models.
Author Related Publications
Karam mohamed goda, "An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: Analysis and validations", Pergamon, 2021
More
Karam mohamed goda, "BSMA: A novel metaheuristic algorithm for multi-dimensional knapsack problems: Method and comprehensive analysis", Pergamon, 2021
More
Karam mohamed goda, "An Improved Binary Grey-Wolf Optimizer With Simulated Annealing for Feature Selection", IEEE, 2021
More
Karam mohamed goda, "Evolutionary algorithm-based convolutional neural network for predicting heart diseases", Elsevier, 2021
More
Karam mohamed goda, "A clustering based Swarm Intelligence optimization technique for the Internet of Medical Things", Elsevier, 2021
More
Department Related Publications
Mohammed Abdel Basset Metwally Attia, "Discrete greedy flower pollination algorithm for spherical traveling salesman problem", Springer, 2019
More
Mohammed Abdel Basset Metwally Attia, "A New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems", Natural Sciences Publishing Cor., 2014
More
Saber Mohamed, "Training and Testing a Self-Adaptive Multi-Operator Evolutionary Algorithm for Constrained Optimization", ELSEVEIR, 2015
More
Saber Mohamed, "An Improved Self-Adaptive Differential Evolution Algorithm for Optimization Problems", IEEE, 2013
More
Saber Mohamed, "Differential Evolution with Dynamic Parameters Selection for Optimization Problems", IEEE, 2014
More
جامعة المنصورة
جامعة الاسكندرية
جامعة القاهرة
جامعة سوهاج
جامعة الفيوم
جامعة بنها
جامعة دمياط
جامعة بورسعيد
جامعة حلوان
جامعة السويس
شراقوة
جامعة المنيا
جامعة دمنهور
جامعة المنوفية
جامعة أسوان
جامعة جنوب الوادى
جامعة قناة السويس
جامعة عين شمس
جامعة أسيوط
جامعة كفر الشيخ
جامعة السادات
جامعة طنطا
جامعة بنى سويف