An updated review of mesoporous carbon as a novel drug delivery system

Faculty Pharmacy Year: 2021
Type of Publication: ZU Hosted Pages: 1029-1037
Authors:
Journal: Drug Development and Industrial Pharmacy Taylor & Francis Volume: 47
Keywords : , updated review , mesoporous carbon , , novel drug    
Abstract:
The nanotechnology approach has been recently adopted to provide more reliable, effective, controlled, and safe drug delivery systems. Nanostructured materials have gained great interest, including siliceous and carbonaceous nanoparticles. The effectiveness of mesoporous carbon nanoparticles (MCNs) in tumor imaging, targeting, and treatment is urging for more future studies. MCNs possess superior properties such as their biocompatibility, large surface area, large pore volume, tunability, and more responsive behavior to internal and external release triggers. These outstanding features make MCNs more applicable for stimuli-responsive drug delivery than the conventional forms of mesoporous silica nanoparticles (MSNs) and other carbon nanoparticles. In this review, we outlined the latest updates regarding the safety, benefits, and potential applications of MCNs.
   
     
 
       

Author Related Publications

    Department Related Publications

    • Mahmoud Mokhtar AhmedIbrahiem, "Phase Study and Characterization of Certain Developed Multicomponent Colloidal Systems and their Potential Application As Carriers for An Antimicrobial Agent", لايوجد, 1900 More
    • Amr Selim Ahmed Ali Abu Lila, "Ex-vivo/in-vitro anti-polyethylene glycol (PEG) immunoglobulin M production from murine splenic B cells stimulated by PEGylated liposome", J.Stage, 2013 More
    • Amr Selim Ahmed Ali Abu Lila, "Combination therapy with metronomic S-1 dosing and oxaliplatin-containing PEG-coated cationic liposomes in a murine colorectal tumor model: synergy or antagonism?", Elsevier, 2012 More
    • Azza Ali Hassan Solyman, "Formulation and evaluation of metformin hydrochloride-loaded niosomes as controlled release drug delivery system", Informa health, 2013 More
    • Amr Selim Ahmed Ali Abu Lila, "Oxaliplatin targeting to angiogenic vessels by PEGylated cationic liposomes suppresses the angiogenesis in a dorsal air sac mouse model", Elsevier, 2009 More
    Tweet