Zagazig University Digital Repository
Home
Thesis & Publications
All Contents
Publications
Thesis
Graduation Projects
Research Area
Research Area Reports
Search by Research Area
Universities Thesis
ACADEMIC Links
ACADEMIC RESEARCH
Zagazig University Authors
Africa Research Statistics
Google Scholar
Research Gate
Researcher ID
CrossRef
Health-aware frequency separation method for online energy management of fuel cell hybrid vehicle considering efficient urban utilization
Faculty
Engineering
Year:
2021
Type of Publication:
ZU Hosted
Pages:
Authors:
Hytham Saad Mohamed Ramadan
Staff Zu Site
Abstract In Staff Site
Journal:
International Journal of Hydrogen Energy ELSEVIER-International Journal of Hydrogen Energy
Volume:
Keywords :
Health-aware frequency separation method , online energy
Abstract:
Frequency separation methods (FSMs) are frequently used to implement energy management of fuel cell hybrid vehicle (FCHV), due to their flexible online implementation and resilience under diverse driving environments. However, predefined static rules of FSM generally result in inefficient operation of FCHV and rapid deterioration of sources. Additionally, allocated limits of storage devices are likely to be violated in the conventional FSM. With this inspiration, the paper proposes a novel health-aware FSM (HFSM) to appropriately distribute the traction power among energy sources of FCHV with efficient urban utilization. The power separation rules of HFSM are tuned in an instantaneous manner to concurrently realize the fuel economy, lifespan extension and allocated storage limits. Within HFSM, an online optimizer is formulated, which introduces the concept of soft/hard limitations and rationalized cost structure to adequately quantify the fuel consumption and health degradation of fuel cell. An adaptive droop adjustment is then integrated with HFSM to consistently realize the storage limitations. Compared to conventional FSM, considerable improvements in the fuel economy and fuel cell service life are observed over an extended iterative loop of standard urban driving cycles.
Author Related Publications
Hytham Saad Mohamed Ramadan, "Efficient and Sustainable Reconfiguration of Distribution Networks via Metaheuristic Optimization", IEEE, 2022
More
Hytham Saad Mohamed Ramadan, "Efficient experimental energy management operating for FC/battery/SC vehicles via hybrid Artificial Neural Networks-Passivity Based Control", ELSEVIER, 2021
More
Hytham Saad Mohamed Ramadan, "Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives", ELSEVIER, 2021
More
Hytham Saad Mohamed Ramadan, "Efficient metaheuristic utopia-based multi-objective solutions of optimal battery-mix storage for microgrids", ELSEVIER, 2021
More
Hytham Saad Mohamed Ramadan, "Optimal reconfiguration for vulnerable radial smart grids under uncertain operating conditions", ELSEVIER, 2021
More
Department Related Publications
Raef Seam Sayed Ahmed, "Model predictive control algorithm for fault ride-through of stand-alone microgrid inverter", Elsevier Ltd., 2021
More
Enas Ahmed Mohamed Abdelhay, "Recent Maximum Power Point Tracking Methods for Wind Energy Conversion System", Elsevier, 2024
More
Raef Seam Sayed Ahmed, "Optimal design and analysis of DC–DC converter with maximum power controller for stand-alone PV system", Elsevier Ltd., 2021
More
Raef Seam Sayed Ahmed, "Parameters identification and optimization of photovoltaic panels under real conditions using Lambert W-function", Elsevier Ltd., 2021
More
Mohammed Abdelhamied Abdelnaeem , "Artificial ecosystem-based optimiser to electrically characterise PV generating systems under various operating conditions reinforced by experimental validations", Wiley, 2021
More
جامعة المنصورة
جامعة الاسكندرية
جامعة القاهرة
جامعة سوهاج
جامعة الفيوم
جامعة بنها
جامعة دمياط
جامعة بورسعيد
جامعة حلوان
جامعة السويس
شراقوة
جامعة المنيا
جامعة دمنهور
جامعة المنوفية
جامعة أسوان
جامعة جنوب الوادى
جامعة قناة السويس
جامعة عين شمس
جامعة أسيوط
جامعة كفر الشيخ
جامعة السادات
جامعة طنطا
جامعة بنى سويف