Dual-layer approach for systematic sizing and online energy management of fuel cell hybrid vehicles

Faculty Engineering Year: 2021
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Applied Energy ELSEVIER- Applied Energy Volume:
Keywords : Dual-layer approach , systematic sizing , online energy    
Abstract:
Numerous shortcomings such as higher manufacturing cost, inadequate refueling facilities, and durability issues are impeding the competitiveness of fuel cell hybrid vehicles (FCHVs). Effectively coordinating the design and operational aspects with a fair trade-off among ownership price, energy consumption, and health degradation is the key to address these shortcomings. Against this background, the paper devises a novel dual-layer approach to synergize the sizing aspect with the online energy management system (OEMS) of FCHV. Within the proposed approach, the first layer utilizes the specific driving parameters to offer a global configuration of the FCHV propulsion system. Despite guaranteeing consistent vehicular performance under diverse driving conditions, the global configuration generally favors oversized sources. To address this problem, flexible design coefficients are introduced to allocate a practical sizing range to the sources of FCHV. From this range, a feasible combination is selected in the second layer by coordinating the sizing procedure with the OEMS. An effective coupling method is exploited to design the OEMS, where two distinct supervisors with instantaneously adjustable rules are formulated. The primary supervisor comprises a search-horizon based online optimizer to tune the frequency-driven power splitting rules, subject to fuel economy, health degradation, and storage violation. Subsequently, a droop-adjustment procedure is integrated as secondary supervisor to realize the storage limitations. An in-depth qualitative analysis yields a global propulsion configuration with a suitable compromise among ownership price, fuel economy, and health degradation, highlighting the efficacy of the proposed approach. At the OEMS level, compared to competing variants of frequency-driven power splitting methods, the expected improvements in fuel consumption and health degradation costs can approximately reach 14% and 29% in the studied driving environments.
   
     
 
       

Author Related Publications

  • Hytham Saad Mohamed Ramadan, "Efficient and Sustainable Reconfiguration of Distribution Networks via Metaheuristic Optimization", IEEE, 2022 More
  • Hytham Saad Mohamed Ramadan, "Efficient experimental energy management operating for FC/battery/SC vehicles via hybrid Artificial Neural Networks-Passivity Based Control", ELSEVIER, 2021 More
  • Hytham Saad Mohamed Ramadan, "Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives", ELSEVIER, 2021 More
  • Hytham Saad Mohamed Ramadan, "Efficient metaheuristic utopia-based multi-objective solutions of optimal battery-mix storage for microgrids", ELSEVIER, 2021 More
  • Hytham Saad Mohamed Ramadan, "Optimal reconfiguration for vulnerable radial smart grids under uncertain operating conditions", ELSEVIER, 2021 More

Department Related Publications

  • Raef Seam Sayed Ahmed, "Model predictive control algorithm for fault ride-through of stand-alone microgrid inverter", Elsevier Ltd., 2021 More
  • Enas Ahmed Mohamed Abdelhay, "Recent Maximum Power Point Tracking Methods for Wind Energy Conversion System", Elsevier, 2024 More
  • Raef Seam Sayed Ahmed, "Optimal design and analysis of DC–DC converter with maximum power controller for stand-alone PV system", Elsevier Ltd., 2021 More
  • Raef Seam Sayed Ahmed, "Parameters identification and optimization of photovoltaic panels under real conditions using Lambert W-function", Elsevier Ltd., 2021 More
  • Mohammed Abdelhamied Abdelnaeem , "Artificial ecosystem-based optimiser to electrically characterise PV generating systems under various operating conditions reinforced by experimental validations", Wiley, 2021 More
Tweet