A Novel Hybrid Gradient-Based Optimizer and Grey Wolf Optimizer Feature Selection Method for Human Activity Recognition Using Smartphone Sensors

Faculty Engineering Year: 2021
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Entropy Multidisciplinary Digital Publishing Institute Volume: 23
Keywords : , Novel Hybrid Gradient-Based Optimizer , Grey Wolf    
Abstract:
Human activity recognition (HAR) plays a vital role in different real-world applications such as in tracking elderly activities for elderly care services, in assisted living environments, smart home interactions, healthcare monitoring applications, electronic games, and various human–computer interaction (HCI) applications, and is an essential part of the Internet of Healthcare Things (IoHT) services. However, the high dimensionality of the collected data from these applications has the largest influence on the quality of the HAR model. Therefore, in this paper, we propose an efficient HAR system using a lightweight feature selection (FS) method to enhance the HAR classification process. The developed FS method, called GBOGWO, aims to improve the performance of the Gradient-based optimizer (GBO) algorithm by using the operators of the grey wolf optimizer (GWO). First, GBOGWO is used to select the appropriate features; then, the support vector machine (SVM) is used to classify the activities. To assess the performance of GBOGWO, extensive experiments using well-known UCI-HAR and WISDM datasets were conducted. Overall outcomes show that GBOGWO improved the classification accuracy with an average accuracy of 98%.
   
     
 
       

Author Related Publications

  • Ahmed Mohamed Helmy Elsadiek, "Efficient and Sustainable Reconfiguration of Distribution Networks via Metaheuristic Optimization", IEEE, 2022 More
  • Ahmed Mohamed Helmy Elsadiek, "LCMFO: An Improved Moth-Flame Algorithm for Combinatorial Optimization Problems", International Journal of Engineering and Technology, 2018 More
  • Ahmed Mohamed Helmy Elsadiek, "Adaptive Sine Cosine Optimization Algorithm Integrated with Particle Swarm for Pairwise Local Sequence Alignment.", Elsevier, 2018 More
  • Ahmed Mohamed Helmy Elsadiek, "Pairwise Global Sequence Alignment Using Sine-Cosine Optimization Algorithm.", Springer, Cham., 2018 More
  • Ahmed Mohamed Helmy Elsadiek, "Two Layer Hybrid Scheme of IMO and PSO for Optimization of Local Aligner: COVID-19 as a Case Study", Springer, 2021 More

Department Related Publications

  • Nesreen Ibrahim Ziedan, "NAVSDR: A GPU-based Modular GPS Software Receiver,", ION GNSS, 2015 More
  • Nesreen Ibrahim Ziedan, "Weak GPS Signal Tracking using FFT Discriminator in Open Loop Receiver", Springer GPS Solutions, 2014 More
  • Ibrahiem Elsayed Mohamed Zedan, "An Efficient Convolutional Neural Network Classification Model for Several Sign Language Alphabets", (The Science and Information Organization (SAI, 2023 More
  • Amro Ahmed Ismail Morsy , "An Efficient Convolutional Neural Network Classification Model for Several Sign Language Alphabets", (The Science and Information Organization (SAI, 2023 More
  • Ahmed Osman Mahmoud Eid, "An Efficient Convolutional Neural Network Classification Model for Several Sign Language Alphabets", (The Science and Information Organization (SAI, 2023 More
Tweet