Predicting the mechanical properties of Cu–Al2O3 nanocomposites using machine learning and finite element simulation of indentation experiments

Faculty Science Year: 2021
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Ceramics International Elsevier Volume:
Keywords : Predicting , mechanical properties , Cu–Al2O3 nanocomposites using    
Abstract:
Micromechanics model, finite element (FE) simulation of microindentation and machine learning were deployed to predict the mechanical properties of Cu–Al2O3 nanocomposites. The micromechanical model was developed based on the rule of mixture and grain and grain boundary sizes evolution to predict the elastic modulus of the produced nanocomposites. Then, a FE model was developed to simulate the microindentation test. The input for the FE model was the elastic modulus that was computed using the micromechanics model and wide range of yield and tangent stresses values. Finally, the output load-displacement response from the FE model, the elastic modulus, the yield and tangent strengths used for the FE simulations, and the residual indentation depth were used to train the machine learning model (Random vector functional link network) for the prediction of the yield and tangent stresses of the produced nanocomposites. Cu–Al2O3 nanocomposites with different Al2O3 concentration were manufactured using insitu chemical method to validate the proposed model. After training the model, the microindentation experimental load-displacement curve for Cu–Al2O3 nanocomposites was fed to the machine learning model and the mechanical properties were obtained. The obtained mechanical properties were in very good agreement with the experimental ones achieving 0.99 coefficient of determination R2 for the yield strength.
   
     
 
       

Author Related Publications

  • Mohamed El Sayed Ahmed Muhamed, "A Grunwald–Letnikov based Manta ray foraging optimizer for global optimization and image segmentation", Elsevier, 2020 More
  • Mohamed El Sayed Ahmed Muhamed, "A novel hybrid gradient-based optimizer and grey wolf optimizer feature selection method for human activity recognition using smartphone sensors", MDPI, 2021 More
  • Mohamed El Sayed Ahmed Muhamed, "Efficient schemes for playout latency reduction in P2P-VOD systems", Springer, 2018 More
  • Mohamed El Sayed Ahmed Muhamed, "a novel algorithm for source localization based on nonnegative matrix factroization using \alpha 'beta divergence in chochleagram", WSEAS, 2013 More
  • Mohamed El Sayed Ahmed Muhamed, "Open cluster membership probability based on K-means clustering algorithm", Springer, 2016 More

Department Related Publications

  • Hany Samih Bayoumi Ibrahim, "Passive and active controllers for suppressing the torsional vibration of multiple-degree-of-freedom system", Sage, 2014 More
  • Ahmed Mohamed Khedr Souliman, "SEP-CS: Effective Routing Protocol for Heterogeneous Wireless Sensor Networks", Ad Hoc & Sensor Wireless Networks, 2012 More
  • Ahmed Mohamed Khedr Souliman, "Minimum connected cover of a query region in heterogeneous wireless sensor networks", Information Sciences, 2013 More
  • Ahmed Mohamed Khedr Souliman, "IBLEACH: intra-balanced LEACH protocol for wireless sensor networks", Wireless Netw, 2014 More
  • Ahmed Mohamed Khedr Souliman, "AGENTS FOR INTEGRATING DISTRIBUTED DATA FOR FUNCTION COMPUTATIONS", Computing and Informatics,, 2012 More
Tweet