A hybrid adaptive neuro-fuzzy inference system integrated with equilibrium optimizer algorithm for predicting the energetic performance of solar dish collector

Faculty Science Year: 2021
Type of Publication: ZU Hosted Pages:
Authors:
Journal: Energy Elsevier Volume:
Keywords : , hybrid adaptive neuro-fuzzy inference system integrated    
Abstract:
Solar energy exploitation has a vital role to fulfill sustainability and decrease the usage of non-renewable energy resources. Solar parabolic dish collector (SPDC) is an effective alternative to fossil fuels due to its high efficiency. Nevertheless, performance prediction, optimization, and working fluid selection of SPDCs are highly complex problems and need complicated calculations and/or costly time-consuming experiments. Artificial intelligence-based algorithms have been proven to be beneficial in modeling different solar systems. Therefore, this study proposes an improved method to predict the thermal performance parameters of SPDC with a cylindrical cavity receiver using a modified algorithm of the adaptive neuro-fuzzy inference system (ANFIS) integrated with equilibrium optimizer (EO). In the developed algorithm, EO is employed as a new metaheuristic approach to enhance the prediction accuracy of ANFIS via determining the optimal values of ANFIS parameters. To evaluate the performance of the developed method, ANFIS-EO is compared with ANFIS and the conventional artificial neural network. The three models were applied to compare and predict the temperature difference of working fluid, heat gain, and energy efficiency of cylindrical receiver for SPDC operating with two different solar working fluids, namely, multi-wall carbon nanotubes/thermal oil nanofluid and pure thermal oil. Moreover, five statistical criteria are utilized to evaluate the performance of the investigated algorithms. The statistical performance results showed that the ANFIS-EO technique had the best prediction accuracy among the three models, and can be regarded as a powerful optimization tool for predicting the energetic performance of SPDC. The predicted results obtained by the ANFIS-EO have an excellent determination coefficient of 0.99999 for all predicted responses.
   
     
 
       

Author Related Publications

  • Mohamed El Sayed Ahmed Muhamed, "A Grunwald–Letnikov based Manta ray foraging optimizer for global optimization and image segmentation", Elsevier, 2020 More
  • Mohamed El Sayed Ahmed Muhamed, "A novel hybrid gradient-based optimizer and grey wolf optimizer feature selection method for human activity recognition using smartphone sensors", MDPI, 2021 More
  • Mohamed El Sayed Ahmed Muhamed, "Efficient schemes for playout latency reduction in P2P-VOD systems", Springer, 2018 More
  • Mohamed El Sayed Ahmed Muhamed, "a novel algorithm for source localization based on nonnegative matrix factroization using \alpha 'beta divergence in chochleagram", WSEAS, 2013 More
  • Mohamed El Sayed Ahmed Muhamed, "Open cluster membership probability based on K-means clustering algorithm", Springer, 2016 More

Department Related Publications

  • Hany Samih Bayoumi Ibrahim, "Passive and active controllers for suppressing the torsional vibration of multiple-degree-of-freedom system", Sage, 2014 More
  • Ahmed Mohamed Khedr Souliman, "SEP-CS: Effective Routing Protocol for Heterogeneous Wireless Sensor Networks", Ad Hoc & Sensor Wireless Networks, 2012 More
  • Ahmed Mohamed Khedr Souliman, "Minimum connected cover of a query region in heterogeneous wireless sensor networks", Information Sciences, 2013 More
  • Ahmed Mohamed Khedr Souliman, "IBLEACH: intra-balanced LEACH protocol for wireless sensor networks", Wireless Netw, 2014 More
  • Ahmed Mohamed Khedr Souliman, "AGENTS FOR INTEGRATING DISTRIBUTED DATA FOR FUNCTION COMPUTATIONS", Computing and Informatics,, 2012 More
Tweet